Cargando…

3213 Unraveling the role of Phospholamban (PLN) in humans via the characterization of Induced Pluripotent Stem Cell (iPSC) Cardiomyocytes (CM) derived from carriers of a lethal PLN mutation

OBJECTIVES/SPECIFIC AIMS: To study the biology of Phosholamban (PLN) in a human relevant model. METHODS/STUDY POPULATION: State of the art stem-cell technologies using iPSC-CMs derived from carriers of a lethal PLN mutation. RESULTS/ANTICIPATED RESULTS: Our preliminary data demonstrate that this par...

Descripción completa

Detalles Bibliográficos
Autores principales: Trivieri, Maria Giovanna, Stillitano, Francesca, Ceholski, Delaine, Turnbull, Irene, Costa, Kevin, Weber, Thomas, Fish, Kenneth, Kranias, Evangelia, Hajjar, Roger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799595/
http://dx.doi.org/10.1017/cts.2019.62
Descripción
Sumario:OBJECTIVES/SPECIFIC AIMS: To study the biology of Phosholamban (PLN) in a human relevant model. METHODS/STUDY POPULATION: State of the art stem-cell technologies using iPSC-CMs derived from carriers of a lethal PLN mutation. RESULTS/ANTICIPATED RESULTS: Our preliminary data demonstrate that this particular PLN mutation (L39) results in reduced expression and mis-localization of PLN as well as increased incidence of early after depolarization in isolated iPSC-CMs. DISCUSSION/SIGNIFICANCE OF IMPACT: Phospholamban (PLN) is a critical regulator of Ca++ homeostasis yet many uncertainties still remain regarding its role in humans. Our study will provide unique insights into the pathophysiology of this protein in HF.