Cargando…
2498: Individual patient outcome predictions using supervised learning methods
OBJECTIVES/SPECIFIC AIMS: To learn the edit distance costs of a symbolic univariate time series representation through a stochastic finite-state transducer to predict patient outcomes in intensive care units. METHODS/STUDY POPULATION: High frequency data of patients in intensive care units were used...
Autores principales: | Roche-Lima, Abiel, Ordoñez, Patricia, Schwarz, Nelson, Figueroa-Jiménez, Adnel, Garcia-Lebron, Leonardo A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799640/ http://dx.doi.org/10.1017/cts.2017.81 |
Ejemplares similares
-
CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data
por: Wei, Ziyang, et al.
Publicado: (2021) -
Learning stochastic finite-state transducer to predict individual patient outcomes
por: Ordoñez, Patricia, et al.
Publicado: (2016) -
2545: Integration of HMIS and UI Health Cerner Clinical System to enable data sharing about homeless individuals
por: Bahroos, Neil, et al.
Publicado: (2018) -
2476: Identifying strangulated small bowel obstruction with machine learning
por: David Zetumer, Samuel, et al.
Publicado: (2018) -
2416: A machine learning pipeline to predict acute kidney injury (AKI) in patients without AKI in their most recent hospitalization
por: Weisenthal, Samuel, et al.
Publicado: (2018)