Cargando…

Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaharescu, Dragos G., Burghelea, Carmen I., Dontsova, Katerina, Presler, Jennifer K., Hunt, Edward A., Domanik, Kenneth J., Amistadi, Mary K., Sandhaus, Shana, Munoz, Elise N., Gaddis, Emily E., Galey, Miranda, Vaquera-Ibarra, María O., Palacios-Menendez, Maria A., Castrejón-Martinez, Ricardo, Roldán-Nicolau, Estefanía C., Li, Kexin, Maier, Raina M., Reinhard, Christopher T., Chorover, Jon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800431/
https://www.ncbi.nlm.nih.gov/pubmed/31628373
http://dx.doi.org/10.1038/s41598-019-51274-x
_version_ 1783460441784057856
author Zaharescu, Dragos G.
Burghelea, Carmen I.
Dontsova, Katerina
Presler, Jennifer K.
Hunt, Edward A.
Domanik, Kenneth J.
Amistadi, Mary K.
Sandhaus, Shana
Munoz, Elise N.
Gaddis, Emily E.
Galey, Miranda
Vaquera-Ibarra, María O.
Palacios-Menendez, Maria A.
Castrejón-Martinez, Ricardo
Roldán-Nicolau, Estefanía C.
Li, Kexin
Maier, Raina M.
Reinhard, Christopher T.
Chorover, Jon
author_facet Zaharescu, Dragos G.
Burghelea, Carmen I.
Dontsova, Katerina
Presler, Jennifer K.
Hunt, Edward A.
Domanik, Kenneth J.
Amistadi, Mary K.
Sandhaus, Shana
Munoz, Elise N.
Gaddis, Emily E.
Galey, Miranda
Vaquera-Ibarra, María O.
Palacios-Menendez, Maria A.
Castrejón-Martinez, Ricardo
Roldán-Nicolau, Estefanía C.
Li, Kexin
Maier, Raina M.
Reinhard, Christopher T.
Chorover, Jon
author_sort Zaharescu, Dragos G.
collection PubMed
description Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth’s developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO(2) mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.
format Online
Article
Text
id pubmed-6800431
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68004312019-10-25 Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering Zaharescu, Dragos G. Burghelea, Carmen I. Dontsova, Katerina Presler, Jennifer K. Hunt, Edward A. Domanik, Kenneth J. Amistadi, Mary K. Sandhaus, Shana Munoz, Elise N. Gaddis, Emily E. Galey, Miranda Vaquera-Ibarra, María O. Palacios-Menendez, Maria A. Castrejón-Martinez, Ricardo Roldán-Nicolau, Estefanía C. Li, Kexin Maier, Raina M. Reinhard, Christopher T. Chorover, Jon Sci Rep Article Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth’s developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO(2) mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth. Nature Publishing Group UK 2019-10-18 /pmc/articles/PMC6800431/ /pubmed/31628373 http://dx.doi.org/10.1038/s41598-019-51274-x Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zaharescu, Dragos G.
Burghelea, Carmen I.
Dontsova, Katerina
Presler, Jennifer K.
Hunt, Edward A.
Domanik, Kenneth J.
Amistadi, Mary K.
Sandhaus, Shana
Munoz, Elise N.
Gaddis, Emily E.
Galey, Miranda
Vaquera-Ibarra, María O.
Palacios-Menendez, Maria A.
Castrejón-Martinez, Ricardo
Roldán-Nicolau, Estefanía C.
Li, Kexin
Maier, Raina M.
Reinhard, Christopher T.
Chorover, Jon
Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title_full Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title_fullStr Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title_full_unstemmed Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title_short Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
title_sort ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800431/
https://www.ncbi.nlm.nih.gov/pubmed/31628373
http://dx.doi.org/10.1038/s41598-019-51274-x
work_keys_str_mv AT zaharescudragosg ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT burgheleacarmeni ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT dontsovakaterina ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT preslerjenniferk ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT huntedwarda ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT domanikkennethj ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT amistadimaryk ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT sandhausshana ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT munozelisen ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT gaddisemilye ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT galeymiranda ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT vaqueraibarramariao ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT palaciosmenendezmariaa ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT castrejonmartinezricardo ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT roldannicolauestefaniac ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT likexin ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT maierrainam ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT reinhardchristophert ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering
AT choroverjon ecosystembedrockinteractionchangesnutrientcompartmentalizationduringearlyoxidativeweathering