Cargando…
Rrp5 establishes a checkpoint for 60S assembly during 40S maturation
Even though the RNAs contained in the small (40S) and large (60S) ribosomal subunits are cotranscribed, their assembly proceeds largely separately, involving entirely distinct machineries. Nevertheless, separation of the two subunits, an event that is critical for assembly of the small subunit, is d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800521/ https://www.ncbi.nlm.nih.gov/pubmed/31217256 http://dx.doi.org/10.1261/rna.071225.119 |
Sumario: | Even though the RNAs contained in the small (40S) and large (60S) ribosomal subunits are cotranscribed, their assembly proceeds largely separately, involving entirely distinct machineries. Nevertheless, separation of the two subunits, an event that is critical for assembly of the small subunit, is delayed until domain I of the large subunit is transcribed, indicating crosstalk between the two assembly pathways. Here we show that this crosstalk is mediated by the assembly factor Rrp5, one of only three proteins required for assembly of both ribosomal subunits. Quantitative RNA binding and cleavage data demonstrate that early on, Rrp5 blocks separation of the two subunits, and thus 40S maturation by inhibiting the access of Rcl1 to promote cleavage of the nascent rRNA. Upon transcription of domain I of 25S rRNA, the 60S assembly factors Noc1/Noc2 bind both this RNA and Rrp5 to change the Rrp5 RNA binding mode to enable pre-40S rRNA processing. Mutants in the HEAT-repeat domain of Noc1 are deficient in the separation of the subunits, which is rescued by overexpression of wild-type but not inactive Rcl1 in vivo. Thus, Rrp5 establishes a checkpoint for 60S assembly during 40S maturation to ensure balanced levels of the two subunits. |
---|