Cargando…
Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D
The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800951/ https://www.ncbi.nlm.nih.gov/pubmed/31687032 http://dx.doi.org/10.1155/2019/3106929 |
_version_ | 1783460504609488896 |
---|---|
author | Sheard, Jonathan J. Bicer, Mesude Meng, Yiming Frigo, Alessia Aguilar, Rocío Martínez Vallance, Thomas M. Iandolo, Donata Widera, Darius |
author_facet | Sheard, Jonathan J. Bicer, Mesude Meng, Yiming Frigo, Alessia Aguilar, Rocío Martínez Vallance, Thomas M. Iandolo, Donata Widera, Darius |
author_sort | Sheard, Jonathan J. |
collection | PubMed |
description | The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour. |
format | Online Article Text |
id | pubmed-6800951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-68009512019-11-04 Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D Sheard, Jonathan J. Bicer, Mesude Meng, Yiming Frigo, Alessia Aguilar, Rocío Martínez Vallance, Thomas M. Iandolo, Donata Widera, Darius Stem Cells Int Research Article The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour. Hindawi 2019-10-07 /pmc/articles/PMC6800951/ /pubmed/31687032 http://dx.doi.org/10.1155/2019/3106929 Text en Copyright © 2019 Jonathan J. Sheard et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sheard, Jonathan J. Bicer, Mesude Meng, Yiming Frigo, Alessia Aguilar, Rocío Martínez Vallance, Thomas M. Iandolo, Donata Widera, Darius Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title | Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title_full | Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title_fullStr | Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title_full_unstemmed | Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title_short | Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D |
title_sort | optically transparent anionic nanofibrillar cellulose is cytocompatible with human adipose tissue-derived stem cells and allows simple imaging in 3d |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800951/ https://www.ncbi.nlm.nih.gov/pubmed/31687032 http://dx.doi.org/10.1155/2019/3106929 |
work_keys_str_mv | AT sheardjonathanj opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT bicermesude opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT mengyiming opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT frigoalessia opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT aguilarrociomartinez opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT vallancethomasm opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT iandolodonata opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d AT wideradarius opticallytransparentanionicnanofibrillarcelluloseiscytocompatiblewithhumanadiposetissuederivedstemcellsandallowssimpleimagingin3d |