Cargando…
Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13
Predicting residue‐residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 ex...
Autores principales: | Hou, Jie, Wu, Tianqi, Cao, Renzhi, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800999/ https://www.ncbi.nlm.nih.gov/pubmed/30985027 http://dx.doi.org/10.1002/prot.25697 |
Ejemplares similares
-
Evaluation of template‐based modeling in CASP13
por: Croll, Tristan I., et al.
Publicado: (2019) -
Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)
por: Senior, Andrew W., et al.
Publicado: (2019) -
Recent developments in deep learning applied to protein structure prediction
por: Kandathil, Shaun M., et al.
Publicado: (2019) -
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14
por: Liu, Jian, et al.
Publicado: (2021) -
Improving deep learning-based protein distance prediction in CASP14
por: Guo, Zhiye, et al.
Publicado: (2021)