Cargando…

Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the sea‐land transition

Microbial communities from harsh environments hold great promise as sources of biotechnologically relevant strains and compounds. In the present work, we have characterized the microorganisms from the supralittoral and splash zone in three different rocky locations of the Western Mediterranean coast...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina‐Menor, Esther, Tanner, Kristie, Vidal‐Verdú, Àngela, Peretó, Juli, Porcar, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801134/
https://www.ncbi.nlm.nih.gov/pubmed/31562755
http://dx.doi.org/10.1111/1751-7915.13475
Descripción
Sumario:Microbial communities from harsh environments hold great promise as sources of biotechnologically relevant strains and compounds. In the present work, we have characterized the microorganisms from the supralittoral and splash zone in three different rocky locations of the Western Mediterranean coast, a tough environment characterized by high levels of irradiation and large temperature and salinity fluctuations. We have retrieved a complete view of the ecology and functional aspects of these communities and assessed the biotechnological potential of the cultivable microorganisms. All three locations displayed very similar taxonomic profiles, with the genus Rubrobacter and the families Xenococcaceae, Flammeovirgaceae, Phyllobacteriaceae, Rhodobacteraceae and Trueperaceae being the most abundant taxa; and Ascomycota and halotolerant archaea as members of the eukaryotic and archaeal community respectively. In parallel, the culture‐dependent approach yielded a 100‐isolates collection, out of which 12 displayed high antioxidant activities, as evidenced by two in vitro (hydrogen peroxide and DPPH) and confirmed in vivo with Caenorhabditis elegans assays, in which two isolates, CR22 and CR24, resulted in extended survival rates of the nematodes. This work is the first complete characterization of the Mediterranean splash‐zone coastal microbiome, and our results indicate that this microbial niche is home of an extremophilic community that holds biotechnological potential.