Cargando…
Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library
The constitutive androstane receptor (CAR) plays pivotal roles in drug-induced liver injury through the transcriptional regulation of drug-metabolizing enzymes and transporters. Thus, identifying regulatory factors for CAR activation is important for understanding its mechanisms. Numerous studies co...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801383/ https://www.ncbi.nlm.nih.gov/pubmed/31574921 http://dx.doi.org/10.3390/ijms20194855 |
_version_ | 1783460559437430784 |
---|---|
author | Matsuzaka, Yasunari Uesawa, Yoshihiro |
author_facet | Matsuzaka, Yasunari Uesawa, Yoshihiro |
author_sort | Matsuzaka, Yasunari |
collection | PubMed |
description | The constitutive androstane receptor (CAR) plays pivotal roles in drug-induced liver injury through the transcriptional regulation of drug-metabolizing enzymes and transporters. Thus, identifying regulatory factors for CAR activation is important for understanding its mechanisms. Numerous studies conducted previously on CAR activation and its toxicity focused on in vivo or in vitro analyses, which are expensive, time consuming, and require many animals. We developed a computational model that predicts agonists for the CAR using the Toxicology in the 21st Century 10k library. Additionally, we evaluate the prediction performance of novel deep learning (DL)-based quantitative structure-activity relationship analysis called the DeepSnap-DL approach, which is a procedure of generating an omnidirectional snapshot portraying three-dimensional (3D) structures of chemical compounds. The CAR prediction model, which applies a 3D structure generator tool, called CORINA-generated and -optimized chemical structures, in the DeepSnap-DL demonstrated better performance than the existing methods using molecular descriptors. These results indicate that high performance in the prediction model using the DeepSnap-DL approach may be important to prepare suitable 3D chemical structures as input data and to enable the identification of modulators of the CAR. |
format | Online Article Text |
id | pubmed-6801383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68013832019-10-31 Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library Matsuzaka, Yasunari Uesawa, Yoshihiro Int J Mol Sci Article The constitutive androstane receptor (CAR) plays pivotal roles in drug-induced liver injury through the transcriptional regulation of drug-metabolizing enzymes and transporters. Thus, identifying regulatory factors for CAR activation is important for understanding its mechanisms. Numerous studies conducted previously on CAR activation and its toxicity focused on in vivo or in vitro analyses, which are expensive, time consuming, and require many animals. We developed a computational model that predicts agonists for the CAR using the Toxicology in the 21st Century 10k library. Additionally, we evaluate the prediction performance of novel deep learning (DL)-based quantitative structure-activity relationship analysis called the DeepSnap-DL approach, which is a procedure of generating an omnidirectional snapshot portraying three-dimensional (3D) structures of chemical compounds. The CAR prediction model, which applies a 3D structure generator tool, called CORINA-generated and -optimized chemical structures, in the DeepSnap-DL demonstrated better performance than the existing methods using molecular descriptors. These results indicate that high performance in the prediction model using the DeepSnap-DL approach may be important to prepare suitable 3D chemical structures as input data and to enable the identification of modulators of the CAR. MDPI 2019-09-30 /pmc/articles/PMC6801383/ /pubmed/31574921 http://dx.doi.org/10.3390/ijms20194855 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Matsuzaka, Yasunari Uesawa, Yoshihiro Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title | Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title_full | Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title_fullStr | Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title_full_unstemmed | Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title_short | Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library |
title_sort | prediction model with high-performance constitutive androstane receptor (car) using deepsnap-deep learning approach from the tox21 10k compound library |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801383/ https://www.ncbi.nlm.nih.gov/pubmed/31574921 http://dx.doi.org/10.3390/ijms20194855 |
work_keys_str_mv | AT matsuzakayasunari predictionmodelwithhighperformanceconstitutiveandrostanereceptorcarusingdeepsnapdeeplearningapproachfromthetox2110kcompoundlibrary AT uesawayoshihiro predictionmodelwithhighperformanceconstitutiveandrostanereceptorcarusingdeepsnapdeeplearningapproachfromthetox2110kcompoundlibrary |