Cargando…

The Role of the Activation of the TRPV1 Receptor and of Nitric Oxide in Changes in Endothelial and Cardiac Function and Biomarker Levels in Hypertensive Rats

The purpose of the present study was to analyze the actions of transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin (CS) and of its antagonist capsazepine (CZ), on cardiac function as well as endothelial biomarkers and some parameters related with nitric oxide (NO) release in L-N(...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres-Narváez, Juan Carlos, Pérez-Torres, Israel, Castrejón-Téllez, Vicente, Varela-López, Elvira, Oidor-Chan, Víctor Hugo, Guarner-Lans, Verónica, Vargas-González, Álvaro, Martínez-Memije, Raúl, Flores-Chávez, Pedro, Cervantes-Yañez, Etzna Zizith, Soto-Peredo, Claudia Angélica, Pastelín-Hernández, Gustavo, del Valle-Mondragón, Leonardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801429/
https://www.ncbi.nlm.nih.gov/pubmed/31557799
http://dx.doi.org/10.3390/ijerph16193576
Descripción
Sumario:The purpose of the present study was to analyze the actions of transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin (CS) and of its antagonist capsazepine (CZ), on cardiac function as well as endothelial biomarkers and some parameters related with nitric oxide (NO) release in L-N(G)-nitroarginine methyl ester (L-NAME)-induced hypertensive rats. NO has been implicated in the pathophysiology of systemic arterial hypertension (SAHT). We analyzed the levels of nitric oxide (NO), tetrahydrobiopterin (BH4), malondialdehyde (MDA), total antioxidant capacity (TAC), cyclic guanosin monophosphate (cGMP), phosphodiesterase-3 (PDE-3), and the expression of endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GTPCH-1), protein kinase B (AKT), and TRPV1 in serum and cardiac tissue of normotensive (118±3 mmHg) and hypertensive (H) rats (165 ± 4 mmHg). Cardiac mechanical performance (CMP) was calculated and NO was quantified in the coronary effluent in the Langendorff isolated heart model. In hypertensive rats capsaicin increased the levels of NO, BH4, cGMP, and TAC, and reduced PDE-3 and MDA. Expressions of eNOS, GTPCH-1, and TRPV1 were increased, while AKT was decreased. Capsazepine diminished these effects. In the hypertensive heart, CMP improved with the CS treatment. In conclusion, the activation of TRPV1 in H rats may be an alternative mechanism for the improvement of cardiac function and systemic levels of biomarkers related to the bioavailability of NO.