Cargando…
In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells
Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differ...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801435/ https://www.ncbi.nlm.nih.gov/pubmed/31581495 http://dx.doi.org/10.3390/ijms20194883 |
_version_ | 1783460570835451904 |
---|---|
author | Sukpaita, Teerawat Chirachanchai, Suwabun Suwattanachai, Pornchanok Everts, Vincent Pimkhaokham, Atiphan Ampornaramveth, Ruchanee Salingcarnboriboon |
author_facet | Sukpaita, Teerawat Chirachanchai, Suwabun Suwattanachai, Pornchanok Everts, Vincent Pimkhaokham, Atiphan Ampornaramveth, Ruchanee Salingcarnboriboon |
author_sort | Sukpaita, Teerawat |
collection | PubMed |
description | Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differentiation of hPDLCs was analyzed by bone nodule formation and gene expression. In vivo bone regeneration was analyzed in mice calvarial defects. Eighteen mice were divided into 3 groups: one group with empty defects, one group with defects with CS/DA scaffold, and a group with defects with CS/DA scaffold and with hPDLCs. After 6 and 12 weeks, new bone formation was assessed using microcomputed tomography (Micro-CT) and histology. CS/DA scaffold significantly promoted in vitro osteoblast-related gene expression (RUNX2, OSX, COL1, ALP, and OPN) by hPDLCs. Micro-CT revealed that CS/DA scaffolds significantly promoted in vivo bone regeneration both after 6 and 12 weeks (p < 0.05). Histological examination confirmed these findings. New bone formation was observed in defects with CS/DA scaffold; being similar with and without hPDLCs. CS/DA scaffolds can be used as a bone regenerative material with good osteoinductive/osteoconductive properties. |
format | Online Article Text |
id | pubmed-6801435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68014352019-10-31 In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells Sukpaita, Teerawat Chirachanchai, Suwabun Suwattanachai, Pornchanok Everts, Vincent Pimkhaokham, Atiphan Ampornaramveth, Ruchanee Salingcarnboriboon Int J Mol Sci Article Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differentiation of hPDLCs was analyzed by bone nodule formation and gene expression. In vivo bone regeneration was analyzed in mice calvarial defects. Eighteen mice were divided into 3 groups: one group with empty defects, one group with defects with CS/DA scaffold, and a group with defects with CS/DA scaffold and with hPDLCs. After 6 and 12 weeks, new bone formation was assessed using microcomputed tomography (Micro-CT) and histology. CS/DA scaffold significantly promoted in vitro osteoblast-related gene expression (RUNX2, OSX, COL1, ALP, and OPN) by hPDLCs. Micro-CT revealed that CS/DA scaffolds significantly promoted in vivo bone regeneration both after 6 and 12 weeks (p < 0.05). Histological examination confirmed these findings. New bone formation was observed in defects with CS/DA scaffold; being similar with and without hPDLCs. CS/DA scaffolds can be used as a bone regenerative material with good osteoinductive/osteoconductive properties. MDPI 2019-10-01 /pmc/articles/PMC6801435/ /pubmed/31581495 http://dx.doi.org/10.3390/ijms20194883 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sukpaita, Teerawat Chirachanchai, Suwabun Suwattanachai, Pornchanok Everts, Vincent Pimkhaokham, Atiphan Ampornaramveth, Ruchanee Salingcarnboriboon In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title | In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title_full | In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title_fullStr | In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title_full_unstemmed | In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title_short | In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells |
title_sort | in vivo bone regeneration induced by a scaffold of chitosan/dicarboxylic acid seeded with human periodontal ligament cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801435/ https://www.ncbi.nlm.nih.gov/pubmed/31581495 http://dx.doi.org/10.3390/ijms20194883 |
work_keys_str_mv | AT sukpaitateerawat invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells AT chirachanchaisuwabun invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells AT suwattanachaipornchanok invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells AT evertsvincent invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells AT pimkhaokhamatiphan invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells AT ampornaramvethruchaneesalingcarnboriboon invivoboneregenerationinducedbyascaffoldofchitosandicarboxylicacidseededwithhumanperiodontalligamentcells |