Cargando…

Icariin Treatment Enhanced the Skeletal Response to Exercise in Estrogen-Deficient Rats

Estrogen deficiency frequently leads to a fall in estrogen receptor-α (ERα) numbers and then reduces the skeletal response to mechanical strain. It, however, is still unclear whether phytoestrogen administration will enhance the effects of exercise on the estrogen-deficient bone loss. This study aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Renqing, Bu, Wenqian, Chen, Yingfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801517/
https://www.ncbi.nlm.nih.gov/pubmed/31597358
http://dx.doi.org/10.3390/ijerph16193779
Descripción
Sumario:Estrogen deficiency frequently leads to a fall in estrogen receptor-α (ERα) numbers and then reduces the skeletal response to mechanical strain. It, however, is still unclear whether phytoestrogen administration will enhance the effects of exercise on the estrogen-deficient bone loss. This study aimed to determine the effect of Icariin treatment on the response of osteogenic formation to exercise in ovariectomized (OVX) rats. Thirty-two 3-month old female Sprague–Dawley rats were randomly allocated into four groups: (1) Sham-operated (SO); (2) OVX; (3) OVX plus exercise (EX); and (4) OVX plus exercise and Icariin (EI). After 8-week interventions, the rats were killed and samples were collected for bone morphometry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. EI interventions showed a greater improvement for the OVX-induced bone loss and the elevated serum tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) compared with EX only. Both EX and EI interventions bettered the OVX-related reduction of BV/TV and trabecular number and thickness, and decreased the enlargement of trabecular bone separation (Tb. Sp); the improvement for BV/TV and Tb. Sp was greater in EI group. Furthermore, EX and EI treatment significantly increased the number of ALP(+) cells and mineralized nodule areas compared with OVX group; the change was higher in EI group. Additionally, in comparison to OVX rats, the protein and mRNA expression of β-catenin, phosphorylated-Akt (p-Akt) or Akt, ERα, and Runt-related transcription factor 2 (Runx2) in osteoblasts were elevated in EX and EI intervention rats, with greater change observed in EI group. The upregulated β-catenin and Akt mRNA levels in EX and EI groups was depressed by ICI182780 treatment, and the difference in β-catenin and Akt mRNA levels between EX and EI groups was no longer significant. Conclusively, the combination of Icariin and exercise significantly prevent OVX-induced bone loss and increase osteoblast differentiation and the ability of mineralization compared with exercise alone; the changes might be regulated partly by ERα/Akt/β-catenin pathway.