Cargando…
Skin Doctor: Machine Learning Models for Skin Sensitization Prediction that Provide Estimates and Indicators of Prediction Reliability
The ability to predict the skin sensitization potential of small organic molecules is of high importance to the development and safe application of cosmetics, drugs and pesticides. One of the most widely accepted methods for predicting this hazard is the local lymph node assay (LLNA). The goal of th...
Autores principales: | Wilm, Anke, Stork, Conrad, Bauer, Christoph, Schepky, Andreas, Kühnl, Jochen, Kirchmair, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801714/ https://www.ncbi.nlm.nih.gov/pubmed/31569429 http://dx.doi.org/10.3390/ijms20194833 |
Ejemplares similares
-
Skin Doctor CP: Conformal Prediction of the Skin Sensitization Potential of Small Organic Molecules
por: Wilm, Anke, et al.
Publicado: (2020) -
Predicting the Skin Sensitization Potential of Small Molecules with Machine Learning Models Trained on Biologically Meaningful Descriptors
por: Wilm, Anke, et al.
Publicado: (2021) -
ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance
por: Fan, Ningning, et al.
Publicado: (2019) -
NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules
por: Chen, Ya, et al.
Publicado: (2019) -
CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates
por: Holmer, Malte, et al.
Publicado: (2021)