Cargando…

Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth

Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently r...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hongli, Lou, Qian, Ma, Junren, Su, Beibei, Gao, Zhuangzhuang, Liu, Yali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801978/
https://www.ncbi.nlm.nih.gov/pubmed/31554290
http://dx.doi.org/10.3390/ijms20194743
_version_ 1783460706861973504
author Liu, Hongli
Lou, Qian
Ma, Junren
Su, Beibei
Gao, Zhuangzhuang
Liu, Yali
author_facet Liu, Hongli
Lou, Qian
Ma, Junren
Su, Beibei
Gao, Zhuangzhuang
Liu, Yali
author_sort Liu, Hongli
collection PubMed
description Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. In our study, we clone a novel DFR gene from blue flowers of Muscari. aucheri. Quantitative real-time PCR (qRT-PCR) and anthocyanin analysis showed that the expression pattern of MaDFR had strong correlations with the accumulation of delphinidin, relatively weak correlations with cyanidin, and no correations with pelargonidin. However, in vitro enzymatic analysis revealed that the MaDFR enzyme can reduce all the three types of dihydroflavonols (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), although it most preferred dihydromyricetin as a substrate to produce leucodelphinidin, the precursor of blue-hued delphinidin. This indicated that there may be other functional genes responsible for the loss of red pelargonidin-based pigments in Muscari. To further verify the substrate-specific selection domains of MaDFR, an assay of amino acid substitutions was conducted. The activity of MaDFR was not affected whenever the N135 or E146 site was mutated. However, when both of them were mutated, the catalytic activity of MaDFR was lost completely. The results suggest that both the N135 and E146 sites are essential for the activity of MaDFR. Additionally, the heterologous expression of MaDFR in tobacco (Nicotiana tabacum) resulted in increasing anthocyanin accumulation, leading to a darker flower color, which suggested that MaDFR was involved in color development in flowers. In summary, MaDFR has a high preference for dihydromyricetin, and it could be a powerful candidate gene for genetic engineering for blue flower colour modification. Our results also make a valuable contribution to understanding the basis of color variation in the genus Muscari.
format Online
Article
Text
id pubmed-6801978
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68019782019-10-31 Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth Liu, Hongli Lou, Qian Ma, Junren Su, Beibei Gao, Zhuangzhuang Liu, Yali Int J Mol Sci Article Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. In our study, we clone a novel DFR gene from blue flowers of Muscari. aucheri. Quantitative real-time PCR (qRT-PCR) and anthocyanin analysis showed that the expression pattern of MaDFR had strong correlations with the accumulation of delphinidin, relatively weak correlations with cyanidin, and no correations with pelargonidin. However, in vitro enzymatic analysis revealed that the MaDFR enzyme can reduce all the three types of dihydroflavonols (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), although it most preferred dihydromyricetin as a substrate to produce leucodelphinidin, the precursor of blue-hued delphinidin. This indicated that there may be other functional genes responsible for the loss of red pelargonidin-based pigments in Muscari. To further verify the substrate-specific selection domains of MaDFR, an assay of amino acid substitutions was conducted. The activity of MaDFR was not affected whenever the N135 or E146 site was mutated. However, when both of them were mutated, the catalytic activity of MaDFR was lost completely. The results suggest that both the N135 and E146 sites are essential for the activity of MaDFR. Additionally, the heterologous expression of MaDFR in tobacco (Nicotiana tabacum) resulted in increasing anthocyanin accumulation, leading to a darker flower color, which suggested that MaDFR was involved in color development in flowers. In summary, MaDFR has a high preference for dihydromyricetin, and it could be a powerful candidate gene for genetic engineering for blue flower colour modification. Our results also make a valuable contribution to understanding the basis of color variation in the genus Muscari. MDPI 2019-09-24 /pmc/articles/PMC6801978/ /pubmed/31554290 http://dx.doi.org/10.3390/ijms20194743 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Hongli
Lou, Qian
Ma, Junren
Su, Beibei
Gao, Zhuangzhuang
Liu, Yali
Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title_full Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title_fullStr Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title_full_unstemmed Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title_short Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth
title_sort cloning and functional characterization of dihydroflavonol 4-reductase gene involved in anthocyanidin biosynthesis of grape hyacinth
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801978/
https://www.ncbi.nlm.nih.gov/pubmed/31554290
http://dx.doi.org/10.3390/ijms20194743
work_keys_str_mv AT liuhongli cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth
AT louqian cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth
AT majunren cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth
AT subeibei cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth
AT gaozhuangzhuang cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth
AT liuyali cloningandfunctionalcharacterizationofdihydroflavonol4reductasegeneinvolvedinanthocyanidinbiosynthesisofgrapehyacinth