Cargando…
Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest
In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still l...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802026/ https://www.ncbi.nlm.nih.gov/pubmed/31641477 http://dx.doi.org/10.1002/ece3.5635 |
_version_ | 1783460719010775040 |
---|---|
author | Yu, Shiqin Mo, Qifeng Li, Yingwen Li, Yongxing Zou, Bi Xia, Hanping Li, Zhi'an Wang, Faming |
author_facet | Yu, Shiqin Mo, Qifeng Li, Yingwen Li, Yongxing Zou, Bi Xia, Hanping Li, Zhi'an Wang, Faming |
author_sort | Yu, Shiqin |
collection | PubMed |
description | In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still limited. In the present study, we conducted a precipitation manipulation experiment in a tropical forest. First, we applied a 60% rainfall exclusion in April and May to defer the onset of wet season and added the same amount of water in October and November to mimic a deferred wet season (DW); second, we increased as much as 25% mean annual precipitation into plots in July and August to simulate a wetter wet season (WW). Five single‐species litters, with their carbon to nitrogen ratio ranged from 27 to 49, and a mixed litter were used to explore how the precipitation change treatments would affect litter decomposition rate. The interaction between precipitation changes and litter species was not significant. The DW treatment marginally accelerated litter decomposition across six litter types. Detailed analysis showed that DW increased litter decomposition rate in the periods of January to March and October to December, when soil moisture was increased by the water addition in the dry season. In contrast, WW did not significantly affect litter decomposition rate, which was consistent with the unchanged soil moisture pattern. In conclusion, the study indicated that regardless of litter types or litter quality, the projected deferred wet season would increase litter decomposition rate, whereas the wetter wet season would not affect litter decomposition rate in the tropical forests. This study improves our knowledge of how tropical forest carbon cycling in response to precipitation change. |
format | Online Article Text |
id | pubmed-6802026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68020262019-10-22 Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest Yu, Shiqin Mo, Qifeng Li, Yingwen Li, Yongxing Zou, Bi Xia, Hanping Li, Zhi'an Wang, Faming Ecol Evol Original Research In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still limited. In the present study, we conducted a precipitation manipulation experiment in a tropical forest. First, we applied a 60% rainfall exclusion in April and May to defer the onset of wet season and added the same amount of water in October and November to mimic a deferred wet season (DW); second, we increased as much as 25% mean annual precipitation into plots in July and August to simulate a wetter wet season (WW). Five single‐species litters, with their carbon to nitrogen ratio ranged from 27 to 49, and a mixed litter were used to explore how the precipitation change treatments would affect litter decomposition rate. The interaction between precipitation changes and litter species was not significant. The DW treatment marginally accelerated litter decomposition across six litter types. Detailed analysis showed that DW increased litter decomposition rate in the periods of January to March and October to December, when soil moisture was increased by the water addition in the dry season. In contrast, WW did not significantly affect litter decomposition rate, which was consistent with the unchanged soil moisture pattern. In conclusion, the study indicated that regardless of litter types or litter quality, the projected deferred wet season would increase litter decomposition rate, whereas the wetter wet season would not affect litter decomposition rate in the tropical forests. This study improves our knowledge of how tropical forest carbon cycling in response to precipitation change. John Wiley and Sons Inc. 2019-09-10 /pmc/articles/PMC6802026/ /pubmed/31641477 http://dx.doi.org/10.1002/ece3.5635 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Yu, Shiqin Mo, Qifeng Li, Yingwen Li, Yongxing Zou, Bi Xia, Hanping Li, Zhi'an Wang, Faming Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title | Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title_full | Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title_fullStr | Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title_full_unstemmed | Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title_short | Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
title_sort | changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802026/ https://www.ncbi.nlm.nih.gov/pubmed/31641477 http://dx.doi.org/10.1002/ece3.5635 |
work_keys_str_mv | AT yushiqin changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT moqifeng changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT liyingwen changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT liyongxing changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT zoubi changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT xiahanping changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT lizhian changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest AT wangfaming changesinseasonalprecipitationdistributionbutnotannualamountaffectlitterdecompositioninasecondarytropicalforest |