Cargando…
Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems
Deep learning (DL) neural networks have only recently been employed to interpret chest radiography (CXR) to screen and triage people for pulmonary tuberculosis (TB). No published studies have compared multiple DL systems and populations. We conducted a retrospective evaluation of three DL systems (C...
Autores principales: | Qin, Zhi Zhen, Sander, Melissa S., Rai, Bishwa, Titahong, Collins N., Sudrungrot, Santat, Laah, Sylvain N., Adhikari, Lal Mani, Carter, E. Jane, Puri, Lekha, Codlin, Andrew J., Creswell, Jacob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802077/ https://www.ncbi.nlm.nih.gov/pubmed/31628424 http://dx.doi.org/10.1038/s41598-019-51503-3 |
Ejemplares similares
-
The performance and yield of tuberculosis testing algorithms using microscopy, chest x-ray, and Xpert MTB/RIF
por: Creswell, Jacob, et al.
Publicado: (2018) -
Systematic screening for tuberculosis among hospital outpatients in Cameroon: The role of screening and testing algorithms to improve case detection
por: Sander, Melissa S., et al.
Publicado: (2019) -
An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients
por: Rahman, Md Toufiq, et al.
Publicado: (2017) -
Reading chest radiographs in the critically ill (Part I): Normal chest radiographic appearance, instrumentation and complications from instrumentation
por: Khan, Ali Nawaz, et al.
Publicado: (2009) -
The impact of artificial intelligence on the reading times of radiologists for chest radiographs
por: Shin, Hyun Joo, et al.
Publicado: (2023)