Cargando…
Evaluation of left ventricular remodelling in young Afro-Caribbean athletes
BACKGROUND: Cardiac adaptation to intense physical training is determined by many factors including age, gender, body size, load training and ethnicity. Despite the wide availability of ECG analysis, with a higher presence of abnormalities in different races, echocardiographic studies on young Afro-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802107/ https://www.ncbi.nlm.nih.gov/pubmed/31630681 http://dx.doi.org/10.1186/s12947-019-0169-8 |
Sumario: | BACKGROUND: Cardiac adaptation to intense physical training is determined by many factors including age, gender, body size, load training and ethnicity. Despite the wide availability of ECG analysis, with a higher presence of abnormalities in different races, echocardiographic studies on young Afro-Caribean (AA) and Caucasian athletes (CA) are lacking in literature. We aimed to assess the effect in the secondary LV remodelling of load training in young AA players compared to matched CA players. METHOD: Seventy-seven AA and 53 CA matched soccer players (mean age 17.35 ± 0.50 and 18.25 ± 0.77 y) were enrolled. They were evaluated with echocardiography. A subgroup of 30 AA and 27 CA were followed up for a period of 4 years. The myocardial contractile function was evaluated by speckle-tracking echocardiographic global longitudinal strain (GLS). RESULTS: No significant differences were found in weight and height and in blood pressure response to maximal ergometer test in either group. In AA a higher level of LV remodelling, consisting in higher LV wall thickness, higher interventricular septum (IVS) and posterior wall (PW) thickness were found (IVS: 10.04 ± 0.14 and 9.35 ± 0.10 in AA and CA respectively, p < 0.001. PW: 9.70 ± 0.20 and 9.19 ± 0.10 mm in AA and CA respectively, p < 0.05). Strain data showed no significant differences between the two groups (22.35 ± 0.48 and 23.38 ± 0.69 in AA (n = 27) and CA (n = 25), respectively). At the beginning of the follow-up study AA showed a significantly higher left ventricular remodelling (IVS = 9.29 ± 0.3 and 8.53 ± 0.12 mm in AA and CA respectively, p < 0.002. PW = 9.01 ± 0.2 and 8.40 ± 0.20 in AA and CA respectively, p = 0.1). During the next four years of follow-up we observed a regular parallel increase in LV wall thickness and chamber diameters in both groups, proportionally to the increase in body size and LV mass. (IVS = 10.52 ± 0.17 and 9.03 ± 0.22 mm in AA and CA respectively, p < 0.001. PW: 10.06 ± 0.17 and 8.26 ± 0.19 mm in AA and CA respectively, p < 0.001). CONCLUSION: The study shows that the ventricular remodelling observed in AA appears to be a specific phenotype already present in pre-adolescence. These data also suggest that genetic/ethnic factors play a central role in left ventricular remodelling during the first years of life in elite athletes. |
---|