Cargando…

Chondrocyte Co-cultures with the Stromal Vascular Fraction of Adipose Tissue in Polyhydroxybutyrate/Poly-(hydroxybutyrate-co-hydroxyhexanoate) Scaffolds: Evaluation of Cartilage Repair in Rabbit

Chondral defects are challenging to repair because of the poor self-healing capacity of articular cartilage. The aim of this study was to compare and investigate the cartilage regeneration of stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) co-cultured with chondrocytes se...

Descripción completa

Detalles Bibliográficos
Autores principales: Ba, Kai, Wei, Xueqin, Ni, Duan, Li, Na, Du, Tianfeng, Wang, Xinbo, Pan, Wenting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802145/
https://www.ncbi.nlm.nih.gov/pubmed/31337228
http://dx.doi.org/10.1177/0963689719861275
Descripción
Sumario:Chondral defects are challenging to repair because of the poor self-healing capacity of articular cartilage. The aim of this study was to compare and investigate the cartilage regeneration of stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) co-cultured with chondrocytes seeding on scaffolds composed of polyhydroxybutyrate (PHB)/poly-(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx). In this study, the cellular morphologies and proliferation capabilities on scaffolds were evaluated. Next, scaffolds with 1:1 co-culture of ASCs/SVF and chondrocytes were implanted into the full-thickness cartilage defects in rabbit knee for 10 weeks. Cells seeded on the scaffolds showed better adhesion, migration, and proliferation in vitro. Importantly, implantation with scaffolds with SVF and chondrocytes revealed more desirable in vivo healing outcomes. Our results illustrate a one-step surgical procedure for the regeneration of focal cartilage defects using a mixture of SVF from adipose tissue and uncultured chondrocytes.