Cargando…

Laboratory Study Phenomenon of Coal and Gas Outburst Based on a Mid-scale Simulation System

Outburst simulation experiments facilitate understanding coal and gas outburst in underground mining. With the help of the mid-scale simulation system, a model based on similitude principle, coal seam sandwiched by roof and floor, was constructed to conduct an outburst experiment. It had a three-dim...

Descripción completa

Detalles Bibliográficos
Autores principales: Nie, Baisheng, Ma, Yankun, Hu, Shoutao, Meng, Junqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802210/
https://www.ncbi.nlm.nih.gov/pubmed/31628364
http://dx.doi.org/10.1038/s41598-019-51243-4
Descripción
Sumario:Outburst simulation experiments facilitate understanding coal and gas outburst in underground mining. With the help of the mid-scale simulation system, a model based on similitude principle, coal seam sandwiched by roof and floor, was constructed to conduct an outburst experiment. It had a three-dimensional size of 1500 mm × 600 mm × 1000 mm with 0.5 MPa gas pressure. The experimental procedures include specimen preparation, moulding, sealing, gas charging and adsorption, and completion. The outburst process was investigated by analyzing the gas pressure variation, temperature variation, outburst propagation velocity, particle size of outburst coal and energy transformation. During the experiment, each gas charging was accompanied with gas pressure or temperature fluctuation because of coal behavior of gas adsorption-desorption. The outburst propagation velocity was 17.2 m/s, obtained by a mass-weighted calculation of velocities of outburst coal. The small-size coal particles have a higher desorption rate and tend to participate in outburst process. According to energy conservation law, the energy forms of the outburst included elastic strain energy (E(e)), gas expansion energy (E(p)), internal energy of coal (ΔU), breakage work (W(1)), throwing out work (W(2)) and gas-flow loss energy (ΔE), and each was calculated respectively. Gas potential energy, including gas expansion energy and internal energy of coal, registered a larger percent and was far greater than the strain energy. And it can be the main factor influencing the occurrence of low-threshold outburst. The experimental system provides a feasible way to study the initiation and evolution of coal and gas outbursts.