Cargando…

Many-particle excitations in non-covalently doped single-walled carbon nanotubes

Doping of single-walled carbon nanotubes leads to the formation of new energy levels which are able to participate in optical processes. Here, we investigate (6,5)-single walled carbon nanotubes doped in a solution of hydrochloric acid using optical absorption, photoluminescence, and pump-probe tran...

Descripción completa

Detalles Bibliográficos
Autores principales: Eremin, Timofei V., Obraztsov, Petr A., Velikanov, Vladimir A., Shubina, Tatiana V., Obraztsova, Elena D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802218/
https://www.ncbi.nlm.nih.gov/pubmed/31628351
http://dx.doi.org/10.1038/s41598-019-50333-7
Descripción
Sumario:Doping of single-walled carbon nanotubes leads to the formation of new energy levels which are able to participate in optical processes. Here, we investigate (6,5)-single walled carbon nanotubes doped in a solution of hydrochloric acid using optical absorption, photoluminescence, and pump-probe transient absorption techniques. We find that, beyond a certain level of doping, the optical spectra of such nanotubes exhibit the spectral features related to two doping-induced levels, which we assign to a localized exciton [Formula: see text] and a trion T, appearing in addition to an ordinary exciton [Formula: see text] . We evaluate the formation and relaxation kinetics of respective states and demonstrate that the kinetics difference between E(1) and X energy levels perfectly matches the kinetics of the state T. This original finding evidences the formation of trions through nonradiative relaxation via the [Formula: see text] level, rather than via a direct optical excitation from the ground energy state of nanotubes.