Cargando…

Anti-Biofouling Performance of an Immobilized Indigenous Quorum Quenching Bacterium Bacillus cereus HG10 and Its Influence on the Microbial Community in a Bioreactor

Quorum quenching-membrane bioreactors (QQ-MBRs) have been studied widely in recent decades. However, limited information is known about the influence of QQ on the microbial community. In this study, the indigenous QQ bacterium Bacillus cereus HG10 was immobilized and used to control biofouling in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Fangfang, Zhao, Chang, Lee, Chuang Hak, Wang, Wenzhao, Xu, Qiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802356/
https://www.ncbi.nlm.nih.gov/pubmed/31597309
http://dx.doi.org/10.3390/ijerph16193777
Descripción
Sumario:Quorum quenching-membrane bioreactors (QQ-MBRs) have been studied widely in recent decades. However, limited information is known about the influence of QQ on the microbial community. In this study, the indigenous QQ bacterium Bacillus cereus HG10 was immobilized and used to control biofouling in a bioreactor. QQ beads caused extracellular polymeric substance reduction and significantly hindered biofilm formation on a submerged membrane. Community profiling of 16S rRNA gene amplicons revealed that QQ beads dramatically altered the bacterial community structure in activated sludge but not in biofilm. Bacterial structure in the presence of QQ beads showed a clear divergence from that of the control groups at phylum, class, order, family, and genus taxonomic ranks. A significant enrichment of several bacterial genera, including Acinetobacter, Aeromonas, Delftia, Bacillus, and Pseudomonas, and depletion of over 12 bacterial genera were observed. These findings would contribute to a better understanding of why and how immobilized QQ bacteria impair membrane biofouling in QQ-MBRs.