Cargando…
6′-Sialylgalactose inhibits vascular endothelial growth factor receptor 2-mediated angiogenesis
Angiogenesis should be precisely regulated because disordered neovascularization is involved in the aggravation of multiple diseases. The vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2) axis is crucial for controlling angiogenic responses in vascular endothelial cells (ECs). Th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802645/ https://www.ncbi.nlm.nih.gov/pubmed/31604908 http://dx.doi.org/10.1038/s12276-019-0311-6 |
Sumario: | Angiogenesis should be precisely regulated because disordered neovascularization is involved in the aggravation of multiple diseases. The vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2) axis is crucial for controlling angiogenic responses in vascular endothelial cells (ECs). Therefore, inactivating VEGFR-2 signaling may effectively suppress aberrant angiogenesis and alleviate related symptoms. In this study, we performed virtual screening, identified the synthetic disaccharide 6′-sialylgalactose (6SG) as a potent VEGFR-2-binding compound and verified its high binding affinity by Biacore assay. 6SG effectively suppressed VEGF-A-induced VEGFR-2 phosphorylation and subsequent in vitro angiogenesis in HUVECs without inducing cytotoxicity. 6SG also inhibited VEGF-A-induced extracellular-regulated kinase (ERK)/Akt activation and actin stress fiber formation in HUVECs. We demonstrated that 6SG inhibited retinal angiogenesis in a mouse model of retinopathy of prematurity and tumor angiogenesis in a xenograft mouse model. Our results suggest a potential therapeutic benefit of 6SG in inhibiting angiogenesis in proangiogenic diseases, such as retinopathy and cancer. |
---|