Cargando…
Repression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802688/ https://www.ncbi.nlm.nih.gov/pubmed/31998814 http://dx.doi.org/10.22099/mbrc.2019.34240.1421 |
Sumario: | Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be achieved if we understand regulatory mechanisms behind its expression. Utrophin-A 5′UTR mediated repression of translation was reported earlier. In this article, we present evidences of two transcript variants of utrophin-A that do not confer repression to the downstream reporter ORF in mouse myoblast C2C12 cells. These repression-free variants may be targeted for utrophin upregulation. |
---|