Cargando…
An Adaptive Homeostatic Algorithm for the Unsupervised Learning of Visual Features
The formation of structure in the visual system, that is, of the connections between cells within neural populations, is by and large an unsupervised learning process. In the primary visual cortex of mammals, for example, one can observe during development the formation of cells selective to localiz...
Autor principal: | Perrinet, Laurent U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802809/ https://www.ncbi.nlm.nih.gov/pubmed/31735848 http://dx.doi.org/10.3390/vision3030047 |
Ejemplares similares
-
Unsupervised learning algorithms
por: Celebi, M, et al.
Publicado: (2016) -
On efficient sparse spike coding schemes for learning natural scenes in the primary visual cortex
por: Perrinet, Laurent
Publicado: (2007) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007) -
Humans adapt their anticipatory eye movements to the volatility of visual motion properties
por: Pasturel, Chloé, et al.
Publicado: (2020) -
An Adaptive Unsupervised Feature Selection Algorithm Based on MDS for Tumor Gene Data Classification
por: Jin, Bo, et al.
Publicado: (2021)