Cargando…

Molecular epidemiology of Mycoplasma hyorhinis porcine field isolates in the United States

Mycoplasma hyorhinis is one of the causative agents of polyserositis and arthritis in post-weaning pigs. Here we describe the development of a multi-locus sequence typing (MLST) protocol for the characterization of M. hyorhinis field isolates. A total of 104 field isolates from different geographica...

Descripción completa

Detalles Bibliográficos
Autores principales: Clavijo, Maria J., Sreevatsan, Srinand, Johnson, Timothy J., Rovira, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802821/
https://www.ncbi.nlm.nih.gov/pubmed/31634349
http://dx.doi.org/10.1371/journal.pone.0223653
Descripción
Sumario:Mycoplasma hyorhinis is one of the causative agents of polyserositis and arthritis in post-weaning pigs. Here we describe the development of a multi-locus sequence typing (MLST) protocol for the characterization of M. hyorhinis field isolates. A total of 104 field isolates from different geographical locations, swine production systems, and clinical backgrounds, were analyzed. Twenty-seven genes, including housekeeping and those encoding surface proteins, were evaluated to index diversity. Genes encoding surface proteins were included to increase the discriminatory power of the MLST. Four target gene fragments were selected to be included in the final MLST-s (surface) protocol: pdhB, p95, mtlD and ung. Within each locus the nucleotide variation ranged from 1.4% to 20%. The 104 field isolates were classified into 39 distinct sequence types (STs). Multiple STs were found within the same production system and within the same pig. The majority of STs grouped strains from the same production system; however, cases existed where multiple systems shared a ST, indicating potential relationships between pig flows. The majority of the nucleotide changes observed in these genes generated synonymous changes, while non-synonymous changes were exclusively in the mtlD gene fragment, suggesting that this protein is undergoing selection. Molecular typing of M. hyorhinis will primarily aid swine practitioners with pig flow management and identifying sources of infection during outbreaks.