Cargando…
Homoscedasticity: an overlooked critical assumption for linear regression
Linear regression is widely used in biomedical and psychosocial research. A critical assumption that is often overlooked is homoscedasticity. Unlike normality, the other assumption on data distribution, homoscedasticity is often taken for granted when fitting linear regression models. However, contr...
Autores principales: | Yang, Kun, Tu, Justin, Chen, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802968/ https://www.ncbi.nlm.nih.gov/pubmed/31673679 http://dx.doi.org/10.1136/gpsych-2019-100148 |
Ejemplares similares
-
On testing proportional odds assumptions for proportional odds models
por: Liu, Anqi, et al.
Publicado: (2023) -
Two Paradoxes in Linear Regression Analysis
por: FENG, Ge, et al.
Publicado: (2016) -
Post-hoc power analysis: a conceptually valid approach for power based on observed study data
por: Quach, Natalie E, et al.
Publicado: (2022) -
Partial least squares regression and principal component analysis: similarity and differences between two popular variable reduction approaches
por: Liu, Chenyu, et al.
Publicado: (2022) -
Rank regression: an alternative regression approach for data with outliers
por: CHEN, Tian, et al.
Publicado: (2014)