Cargando…
Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images
The emergence of computational pathology comes with a demand to extract more and more information from each tissue sample. Such information extraction often requires the segmentation of numerous histological objects (e.g., cell nuclei, glands, etc.) in histological slide images, a task for which dee...
Autores principales: | Van Eycke, Yves-Rémi, Foucart, Adrien, Decaestecker, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803466/ https://www.ncbi.nlm.nih.gov/pubmed/31681779 http://dx.doi.org/10.3389/fmed.2019.00222 |
Ejemplares similares
-
Panoptic quality should be avoided as a metric for assessing cell nuclei segmentation and classification in digital pathology
por: Foucart, Adrien, et al.
Publicado: (2023) -
Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining
por: Van Eycke, Yves-Rémi, et al.
Publicado: (2017) -
Automatic Segmentation of Novel Coronavirus Pneumonia Lesions in CT Images Utilizing Deep-Supervised Ensemble Learning Network
por: Peng, Yuanyuan, et al.
Publicado: (2022) -
Automated Segmentation of the Human Abdominal Vascular System Using a Hybrid Approach Combining Expert System and Supervised Deep Learning
por: Lareyre, Fabien, et al.
Publicado: (2021) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022)