Cargando…

Contrasting Experimentally Device-Manipulated and Device-Free Smiles

Researchers in psychology have long been interested in not only studying smiles, but in examining the downstream effects of experimentally manipulated smiles. To experimentally manipulate smiles unobtrusively, participants typically hold devices (e.g., pens or chopsticks) in their mouths in a manner...

Descripción completa

Detalles Bibliográficos
Autores principales: Cross, Marie P., Gheorma, Liana, Pressman, Sarah D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803527/
https://www.ncbi.nlm.nih.gov/pubmed/31681094
http://dx.doi.org/10.3389/fpsyg.2019.02297
Descripción
Sumario:Researchers in psychology have long been interested in not only studying smiles, but in examining the downstream effects of experimentally manipulated smiles. To experimentally manipulate smiles unobtrusively, participants typically hold devices (e.g., pens or chopsticks) in their mouths in a manner that activates the muscles involved in smiling. Surprisingly, despite decades of research using these methods, no study has tested to what degree these methods activate the same muscles as more natural, device-free smiles. Our study fills this gap in the literature by contrasting the magnitude of muscle activation in device-free smiles against the popular chopstick/pen manipulation. We also contrast these methods against the Smile Stick, a new device specifically designed to manipulate smiles in a comfortable and hygienic fashion. One hundred fifty-nine participants each participated in three facial expression manipulations that were held for 1 min: smile manipulation via Smile Stick, smile manipulation via chopsticks, and device-free smile. Facial electromyography was used to measure the intensity of the activation of the two main types of muscles involved in genuine, Duchenne smiling: the orbicularis oculi (a muscle group around the eyes) and the zygomaticus major (a muscle group in the cheeks). Furthermore, following each manipulation, participants rated their experience of the manipulation (i.e., comfort, fatigue, and difficulty), experienced affect (positive and negative), and levels of arousal. Results indicated that the Smile Stick and chopsticks performed equally across all measurements. Device-free smiles were rated as most comfortable but also the most fatiguing, and procured the greatest levels of positive affect and lowest levels of negative affect. Furthermore, device-free smiles resulted in significantly higher levels of both zygomaticus major (by ∼40%) and orbicularis oculi (by ∼15%) muscle activation than either the Smile Stick or chopsticks. The two devices were not different from each other in muscle activation. This study reveals that while device-free smiling procures the greatest changes in muscle activation and affect change, smiling muscle groups are activated by device manipulations, and expected changes in affect do occur, albeit to a lesser degree than device-free smiling. It also indicates that the Smile Stick is an acceptable and comparable alternative to disposable chopsticks.