Cargando…

Ole e 15 and its human counterpart -PPIA- chimeras reveal an heterogeneous IgE response in olive pollen allergic patients

Olive pollen is a major cause of immunoglobulin E (IgE)-mediated allergy in Mediterranean countries. It is expected to become a worldwide leading allergenic source because olive cultivation is increasing in many countries. Ole e 15 belongs to the cyclophilin pan-allergen family, which includes highl...

Descripción completa

Detalles Bibliográficos
Autores principales: San Segundo-Acosta, Pablo, Oeo-Santos, Carmen, Navas, Ana, Jurado, Aurora, Villalba, Mayte, Barderas, Rodrigo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803672/
https://www.ncbi.nlm.nih.gov/pubmed/31636292
http://dx.doi.org/10.1038/s41598-019-51005-2
Descripción
Sumario:Olive pollen is a major cause of immunoglobulin E (IgE)-mediated allergy in Mediterranean countries. It is expected to become a worldwide leading allergenic source because olive cultivation is increasing in many countries. Ole e 15 belongs to the cyclophilin pan-allergen family, which includes highly cross-reactive allergens from non-related plant, animal and mold species. Here, the amino acid differences between Ole e 15 and its weak cross-reactive human homolog PPIA were grafted onto Ole e 15 to assess the contribution of specific surface areas to the IgE-binding. Eight Ole e 15-PPIA chimeras were produced in E. coli, purified and tested with 20 sera from Ole e 15-sensitized patients with olive pollen allergy by ELISA experiments. The contribution of linear epitopes was analyzed using twelve overlapping peptides spanning the entire Ole e 15 sequence. All the patients displayed a diverse reduction of the IgE-reactivity to the chimeras, revealing a highly polyclonal and patient-specific response to Ole e 15. IgE-epitopes are distributed across the entire Ole e 15 surface. Two main surface areas containing relevant conformational epitopes have been characterized. This is the first study to identify important IgE-binding regions on the surface of an allergenic cyclophilin.