Cargando…

Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures

The current burst of device concepts based on nanoscale domain-control in magnetically and electrically ordered systems motivates us to review the recent development in the design of domain engineered oxide heterostructures. The improved ability to design and control advanced ferroic domain architec...

Descripción completa

Detalles Bibliográficos
Autores principales: Strkalj, Nives, Gradauskaite, Elzbieta, Nordlander, Johanna, Trassin, Morgan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803956/
https://www.ncbi.nlm.nih.gov/pubmed/31554210
http://dx.doi.org/10.3390/ma12193108
Descripción
Sumario:The current burst of device concepts based on nanoscale domain-control in magnetically and electrically ordered systems motivates us to review the recent development in the design of domain engineered oxide heterostructures. The improved ability to design and control advanced ferroic domain architectures came hand in hand with major advances in investigation capacity of nanoscale ferroic states. The new avenues offered by prototypical multiferroic materials, in which electric and magnetic orders coexist, are expanding beyond the canonical low-energy-consuming electrical control of a net magnetization. Domain pattern inversion, for instance, holds promises of increased functionalities. In this review, we first describe the recent development in the creation of controlled ferroelectric and multiferroic domain architectures in thin films and multilayers. We then present techniques for probing the domain state with a particular focus on non-invasive tools allowing the determination of buried ferroic states. Finally, we discuss the switching events and their domain analysis, providing critical insight into the evolution of device concepts involving multiferroic thin films and heterostructures.