Cargando…
Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete
This study presents the results of an experimental investigation of the effects of nanosilica (NS) on the strength development, transport properties, thermal conductivity, air-void, and pore characteristics of lightweight aggregate concrete (LWAC), with an oven-dry density <1000 kg/m(3). Four typ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804061/ https://www.ncbi.nlm.nih.gov/pubmed/31546591 http://dx.doi.org/10.3390/ma12193078 |
_version_ | 1783461094832996352 |
---|---|
author | Abd Elrahman, Mohamed Chung, Sang-Yeop Sikora, Pawel Rucinska, Teresa Stephan, Dietmar |
author_facet | Abd Elrahman, Mohamed Chung, Sang-Yeop Sikora, Pawel Rucinska, Teresa Stephan, Dietmar |
author_sort | Abd Elrahman, Mohamed |
collection | PubMed |
description | This study presents the results of an experimental investigation of the effects of nanosilica (NS) on the strength development, transport properties, thermal conductivity, air-void, and pore characteristics of lightweight aggregate concrete (LWAC), with an oven-dry density <1000 kg/m(3). Four types of concrete mixtures, containing 0 wt.%, 1 wt.%, 2 wt.%, and 4 wt.% of NS were prepared. The development of flexural and compressive strengths was determined for up to 90 days of curing. In addition, transport properties and microstructural properties were determined, with the use of RapidAir, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) techniques. The experimental results showed that NS has remarkable effects on the mechanical and transport properties of LWACs, even in small dosages. A significant improvement in strength and a reduction of transport properties, in specimens with an increased NS content, was observed. However, the positive effects of NS were more pronounced when a higher amount was incorporated into the mixtures (>1 wt.%). NS contributed to compaction of the LWAC matrix and a modification of the air-void system, by increasing the amount of solid content and refining the fine pore structure, which translated to a noticeable improvement in mechanical and transport properties. On the other hand, NS decreased the consistency, while increasing the viscosity of the fresh mixture. An increment of superplasticizer (SP), along with a decrement of stabilizer (ST) dosages, are thus required. |
format | Online Article Text |
id | pubmed-6804061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68040612019-11-18 Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete Abd Elrahman, Mohamed Chung, Sang-Yeop Sikora, Pawel Rucinska, Teresa Stephan, Dietmar Materials (Basel) Article This study presents the results of an experimental investigation of the effects of nanosilica (NS) on the strength development, transport properties, thermal conductivity, air-void, and pore characteristics of lightweight aggregate concrete (LWAC), with an oven-dry density <1000 kg/m(3). Four types of concrete mixtures, containing 0 wt.%, 1 wt.%, 2 wt.%, and 4 wt.% of NS were prepared. The development of flexural and compressive strengths was determined for up to 90 days of curing. In addition, transport properties and microstructural properties were determined, with the use of RapidAir, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) techniques. The experimental results showed that NS has remarkable effects on the mechanical and transport properties of LWACs, even in small dosages. A significant improvement in strength and a reduction of transport properties, in specimens with an increased NS content, was observed. However, the positive effects of NS were more pronounced when a higher amount was incorporated into the mixtures (>1 wt.%). NS contributed to compaction of the LWAC matrix and a modification of the air-void system, by increasing the amount of solid content and refining the fine pore structure, which translated to a noticeable improvement in mechanical and transport properties. On the other hand, NS decreased the consistency, while increasing the viscosity of the fresh mixture. An increment of superplasticizer (SP), along with a decrement of stabilizer (ST) dosages, are thus required. MDPI 2019-09-21 /pmc/articles/PMC6804061/ /pubmed/31546591 http://dx.doi.org/10.3390/ma12193078 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abd Elrahman, Mohamed Chung, Sang-Yeop Sikora, Pawel Rucinska, Teresa Stephan, Dietmar Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title | Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title_full | Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title_fullStr | Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title_full_unstemmed | Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title_short | Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete |
title_sort | influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804061/ https://www.ncbi.nlm.nih.gov/pubmed/31546591 http://dx.doi.org/10.3390/ma12193078 |
work_keys_str_mv | AT abdelrahmanmohamed influenceofnanosilicaonmechanicalpropertiessorptivityandmicrostructureoflightweightconcrete AT chungsangyeop influenceofnanosilicaonmechanicalpropertiessorptivityandmicrostructureoflightweightconcrete AT sikorapawel influenceofnanosilicaonmechanicalpropertiessorptivityandmicrostructureoflightweightconcrete AT rucinskateresa influenceofnanosilicaonmechanicalpropertiessorptivityandmicrostructureoflightweightconcrete AT stephandietmar influenceofnanosilicaonmechanicalpropertiessorptivityandmicrostructureoflightweightconcrete |