Cargando…
Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC
The excellent optoelectronic properties of graphene give it great potential for applications in optical detection. Among the graphenes obtained through many synthetic methods, epitaxial graphene obtained by thermal decomposition on silicon carbide has remarkable advantages for preparing photodetecto...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804206/ https://www.ncbi.nlm.nih.gov/pubmed/31581618 http://dx.doi.org/10.3390/ma12193227 |
_version_ | 1783461130998382592 |
---|---|
author | Li, Xiaomeng Chen, Xiufang Xu, Xiangang Hu, Xiaobo Zuo, Zhiyuan |
author_facet | Li, Xiaomeng Chen, Xiufang Xu, Xiangang Hu, Xiaobo Zuo, Zhiyuan |
author_sort | Li, Xiaomeng |
collection | PubMed |
description | The excellent optoelectronic properties of graphene give it great potential for applications in optical detection. Among the graphenes obtained through many synthetic methods, epitaxial graphene obtained by thermal decomposition on silicon carbide has remarkable advantages for preparing photodetectors. In this research, epitaxial graphene has been successfully prepared on a silicon surface (0001) of semi-insulating 4H-SiC substrate with a size of 10 mm × 10 mm and epitaxial graphene has been converted to quasi-free-standing graphene by hydrogen passivation. Two metal-graphene-metal photodetectors were fabricated using the two types of graphenes above and the photo-absorption properties of detectors have been investigated under 650-nm laser illumination with different illumination powers. From a comparison of the performances between the two detectors, it was found that a photodetector fabricated with quasi-free-standing graphene shows enhanced performance under a light power of 0.018 mW. Responsivity and external quantum efficiency reach maxima of 5.11 A/W and 9.74%, respectively. This dramatic improvement is mainly due to the disappearance of the buffer layer in epitaxial graphene, providing a new method to achieve optimization of graphene-based opto-electrical devices. |
format | Online Article Text |
id | pubmed-6804206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68042062019-11-18 Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC Li, Xiaomeng Chen, Xiufang Xu, Xiangang Hu, Xiaobo Zuo, Zhiyuan Materials (Basel) Article The excellent optoelectronic properties of graphene give it great potential for applications in optical detection. Among the graphenes obtained through many synthetic methods, epitaxial graphene obtained by thermal decomposition on silicon carbide has remarkable advantages for preparing photodetectors. In this research, epitaxial graphene has been successfully prepared on a silicon surface (0001) of semi-insulating 4H-SiC substrate with a size of 10 mm × 10 mm and epitaxial graphene has been converted to quasi-free-standing graphene by hydrogen passivation. Two metal-graphene-metal photodetectors were fabricated using the two types of graphenes above and the photo-absorption properties of detectors have been investigated under 650-nm laser illumination with different illumination powers. From a comparison of the performances between the two detectors, it was found that a photodetector fabricated with quasi-free-standing graphene shows enhanced performance under a light power of 0.018 mW. Responsivity and external quantum efficiency reach maxima of 5.11 A/W and 9.74%, respectively. This dramatic improvement is mainly due to the disappearance of the buffer layer in epitaxial graphene, providing a new method to achieve optimization of graphene-based opto-electrical devices. MDPI 2019-10-02 /pmc/articles/PMC6804206/ /pubmed/31581618 http://dx.doi.org/10.3390/ma12193227 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Xiaomeng Chen, Xiufang Xu, Xiangang Hu, Xiaobo Zuo, Zhiyuan Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title | Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title_full | Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title_fullStr | Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title_full_unstemmed | Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title_short | Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC |
title_sort | enhanced performance of a visible light detector made with quasi-free-standing graphene on sic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804206/ https://www.ncbi.nlm.nih.gov/pubmed/31581618 http://dx.doi.org/10.3390/ma12193227 |
work_keys_str_mv | AT lixiaomeng enhancedperformanceofavisiblelightdetectormadewithquasifreestandinggrapheneonsic AT chenxiufang enhancedperformanceofavisiblelightdetectormadewithquasifreestandinggrapheneonsic AT xuxiangang enhancedperformanceofavisiblelightdetectormadewithquasifreestandinggrapheneonsic AT huxiaobo enhancedperformanceofavisiblelightdetectormadewithquasifreestandinggrapheneonsic AT zuozhiyuan enhancedperformanceofavisiblelightdetectormadewithquasifreestandinggrapheneonsic |