Cargando…

Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel

The ability to effectively predict tool wear during machining is an extremely important part of diagnostics that results in changing the tool at the relevant time. Effective assessment of the rate of tool wear increases the efficiency of the process and makes it possible to replace the tool before c...

Descripción completa

Detalles Bibliográficos
Autores principales: Twardowski, Paweł, Wiciak-Pikuła, Martyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804216/
https://www.ncbi.nlm.nih.gov/pubmed/31546732
http://dx.doi.org/10.3390/ma12193091
Descripción
Sumario:The ability to effectively predict tool wear during machining is an extremely important part of diagnostics that results in changing the tool at the relevant time. Effective assessment of the rate of tool wear increases the efficiency of the process and makes it possible to replace the tool before catastrophic wear occurs. In this context, the value of the effectiveness of predicting tool wear during turning of hardened steel using artificial neural networks, multilayer perceptron (MLP), was checked. Cutting forces and acceleration of mechanical vibrations were used to monitor the tool wear process. As a result of the analysis using artificial neural networks, the suitability of individual physical phenomena to the monitoring process was assessed.