Cargando…
Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel
The ability to effectively predict tool wear during machining is an extremely important part of diagnostics that results in changing the tool at the relevant time. Effective assessment of the rate of tool wear increases the efficiency of the process and makes it possible to replace the tool before c...
Autores principales: | Twardowski, Paweł, Wiciak-Pikuła, Martyna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804216/ https://www.ncbi.nlm.nih.gov/pubmed/31546732 http://dx.doi.org/10.3390/ma12193091 |
Ejemplares similares
-
Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling (†)
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2020) -
Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning
por: Tabaszewski, Maciej, et al.
Publicado: (2022) -
Cutting Forces during Inconel 718 Orthogonal Turn-Milling
por: Felusiak-Czyryca, Agata, et al.
Publicado: (2021) -
Experimental Investigation of Surface Roughness in Milling of Duralcan(TM) Composite
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2021) -
Tribological Aspects of Cutting Tool Wear during the Turning of Stainless Steels
por: Zawada-Michałowska, Magdalena, et al.
Publicado: (2019)