Cargando…

4H-Benzo[d][1,3]oxazin-4-ones and Dihydro Analogs from Substituted Anthranilic Acids and Orthoesters

A one-pot route to 2-alkyl and 2-aryl-4H-benzo[d][1,3]oxazin-4-ones (also known as 4H-3,1-benzoxazin-4-ones) has been developed and studied. The method involves the reaction of aryl-substituted anthranilic acids with orthoesters in ethanol catalyzed by acetic acid. Additionally, we have also investi...

Descripción completa

Detalles Bibliográficos
Autores principales: Annor-Gyamfi, Joel K., Bunce, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804250/
https://www.ncbi.nlm.nih.gov/pubmed/31581424
http://dx.doi.org/10.3390/molecules24193555
Descripción
Sumario:A one-pot route to 2-alkyl and 2-aryl-4H-benzo[d][1,3]oxazin-4-ones (also known as 4H-3,1-benzoxazin-4-ones) has been developed and studied. The method involves the reaction of aryl-substituted anthranilic acids with orthoesters in ethanol catalyzed by acetic acid. Additionally, we have also investigated the reaction under microwave conditions. Not all of the substrates were successful in yielding the target heterocycles as some of the reactions failed to undergo the final elimination. This process led to the isolation of (±)-2-alkyl/aryl-2-ethoxy-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-ones. The formation of the dihydro analogs correlated with the electron density on the aromatic ring: Electron-donating groups favored the 4H- benzo[d][1,3]oxazin-4-ones, while electron-withdrawing groups tended to favor the dihydro product. Substituting a pyridine ring for the benzene ring in the substrate acid suppressed the reaction.