Cargando…
Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation
The lifetime of steam pipelines in long-term operation in coal-fired power plants are limited due to material damage that resulted from creep exposure. In the present study, the authors comparatively assess the damage of ex-service 12% Cr piping steel with varying degrees of exposure while using acc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804267/ https://www.ncbi.nlm.nih.gov/pubmed/31554172 http://dx.doi.org/10.3390/ma12193106 |
_version_ | 1783461145858801664 |
---|---|
author | van Rooyen, Melody Becker, Thorsten Westraadt, Johan Marx, Genevéve |
author_facet | van Rooyen, Melody Becker, Thorsten Westraadt, Johan Marx, Genevéve |
author_sort | van Rooyen, Melody |
collection | PubMed |
description | The lifetime of steam pipelines in long-term operation in coal-fired power plants are limited due to material damage that resulted from creep exposure. In the present study, the authors comparatively assess the damage of ex-service 12% Cr piping steel with varying degrees of exposure while using accelerated creep tests that employ digital image correlation (DIC) as well as microstructural investigation that is based on electron microscopy. The DIC technique, which allows multiple creep curves to be measured at temperatures ranging from 550–600 °C from a single specimen, revealed higher Zener–Hollomon parameters for a high damage material with a high void density when compared to a material with lower damage and lower void density. Both of the material states showed similar hardness values, subgrain sizes, and boundary character, despite the difference in void densities. Slightly higher inter-particle spacing of MX precipitates results in a lower threshold stress of 79 MPa for the high damage steel when compared to 97 MPa for the low damage material. Besides large Laves phase particles (>0.2 µm) that are found in the higher damaged materials that result in solid solution depletion, the most prominent microstructural damage indicator was a lower density of M(23)C(6) precipitates. Therefore, the observations indicate that the Zener–Hollomon parameter and M(23)C(6) particles are good damage assessment indicators between the most extreme damage states and they predict a lower damage level for a medium void density material. |
format | Online Article Text |
id | pubmed-6804267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68042672019-11-18 Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation van Rooyen, Melody Becker, Thorsten Westraadt, Johan Marx, Genevéve Materials (Basel) Article The lifetime of steam pipelines in long-term operation in coal-fired power plants are limited due to material damage that resulted from creep exposure. In the present study, the authors comparatively assess the damage of ex-service 12% Cr piping steel with varying degrees of exposure while using accelerated creep tests that employ digital image correlation (DIC) as well as microstructural investigation that is based on electron microscopy. The DIC technique, which allows multiple creep curves to be measured at temperatures ranging from 550–600 °C from a single specimen, revealed higher Zener–Hollomon parameters for a high damage material with a high void density when compared to a material with lower damage and lower void density. Both of the material states showed similar hardness values, subgrain sizes, and boundary character, despite the difference in void densities. Slightly higher inter-particle spacing of MX precipitates results in a lower threshold stress of 79 MPa for the high damage steel when compared to 97 MPa for the low damage material. Besides large Laves phase particles (>0.2 µm) that are found in the higher damaged materials that result in solid solution depletion, the most prominent microstructural damage indicator was a lower density of M(23)C(6) precipitates. Therefore, the observations indicate that the Zener–Hollomon parameter and M(23)C(6) particles are good damage assessment indicators between the most extreme damage states and they predict a lower damage level for a medium void density material. MDPI 2019-09-24 /pmc/articles/PMC6804267/ /pubmed/31554172 http://dx.doi.org/10.3390/ma12193106 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article van Rooyen, Melody Becker, Thorsten Westraadt, Johan Marx, Genevéve Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title | Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title_full | Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title_fullStr | Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title_full_unstemmed | Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title_short | Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation |
title_sort | creep damage assessment of ex-service 12% cr power plant steel using digital image correlation and quantitative microstructural evaluation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804267/ https://www.ncbi.nlm.nih.gov/pubmed/31554172 http://dx.doi.org/10.3390/ma12193106 |
work_keys_str_mv | AT vanrooyenmelody creepdamageassessmentofexservice12crpowerplantsteelusingdigitalimagecorrelationandquantitativemicrostructuralevaluation AT beckerthorsten creepdamageassessmentofexservice12crpowerplantsteelusingdigitalimagecorrelationandquantitativemicrostructuralevaluation AT westraadtjohan creepdamageassessmentofexservice12crpowerplantsteelusingdigitalimagecorrelationandquantitativemicrostructuralevaluation AT marxgeneveve creepdamageassessmentofexservice12crpowerplantsteelusingdigitalimagecorrelationandquantitativemicrostructuralevaluation |