Cargando…
Electrochemical Study of a Hybrid Polymethyl Methacrylate Coating using SiO(2) Nanoparticles toward the Mitigation of the Corrosion in Marine Environments
The demand for hydrophobic polymer-based protective coatings to impart high corrosion resistance has increased recently. The increase of the hydrophobicity in a hybrid coating is a new challenge, for that reason and in order to protect a metallic surface of oxidant agents, a poly (methyl methacrylat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804275/ https://www.ncbi.nlm.nih.gov/pubmed/31581421 http://dx.doi.org/10.3390/ma12193216 |
Sumario: | The demand for hydrophobic polymer-based protective coatings to impart high corrosion resistance has increased recently. The increase of the hydrophobicity in a hybrid coating is a new challenge, for that reason and in order to protect a metallic surface of oxidant agents, a poly (methyl methacrylate) (PMMA) coating with the addition of a different amount of silicon dioxide (SiO(2)) was developed. The hybrid coating was applied on a sample of stainless steel AISI 304 by the dip-coating method. The characterization of the coatings was determined by electrochemical impedance spectroscopy and with a scanning electrochemical microscopy. The best coatings were PMMA and PMMA + SiO(2) 0.01% that exhibits a real impedance in the Nyquist diagram of 760 and 427,800 MΩ⋅cm(2), respectively, and the modulus of the real impedance in the Bode diagram present values of 2.2 × 10(8) and 3.3 × 10(8) Ω⋅cm(2). Moreover, the phase angle presents constant values around 75° to 85° and 85° for the PMMA and PMMA + SiO(2) 0.01%, respectively. Moreover, the values of the real resistance for the PMMA + SiO(2) 0.01% coating present values in the order of Mega-ohms despite the coating exhibits an artificial defect in their surface. The contact angle test showed that the hydrophobicity of the hybrid PMMA + SiO(2) 0.01% coating is higher than that of the pure PMMA coatings. The hybrid PMMA + SiO(2) coatings developed in this work are a very interesting and promising area of study in order to develop efficient products to protect metallic surfaces from corrosion phenomenon. |
---|