Cargando…
2412: Predicting response to hemodynamic interventions in the ICU using recurrent neural networks
OBJECTIVES/SPECIFIC AIMS: Our goal is to explore the value of learning algorithms to improve both the efficiency and accuracy of a clinician undertaking the cognitive task of selecting the best resuscitative intervention for a hemodynamically unstable patient in the ICU. Machine learning is an ideal...
Autores principales: | Genkins, Julian, Lasko, Thomas A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804423/ http://dx.doi.org/10.1017/cts.2017.73 |
Ejemplares similares
-
2527: Citation network towards faculty development inside and outside of CTSAs
por: Abiola, Solomon, et al.
Publicado: (2018) -
2498: Individual patient outcome predictions using supervised learning methods
por: Roche-Lima, Abiel, et al.
Publicado: (2018) -
TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings
por: Peres da Silva, Rafael, et al.
Publicado: (2021) -
2416: A machine learning pipeline to predict acute kidney injury (AKI) in patients without AKI in their most recent hospitalization
por: Weisenthal, Samuel, et al.
Publicado: (2018) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023)