Cargando…
Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes
[Image: see text] Three-dimensional plasmonic gold tapers are widely used structures in nano-optics for achieving imaging at the nanometer scale, enhanced spectroscopy, confined light sources, and ultrafast photoelectron emission. To understand their radiation properties further, especially in the p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804427/ https://www.ncbi.nlm.nih.gov/pubmed/31656825 http://dx.doi.org/10.1021/acsphotonics.9b00838 |
_version_ | 1783461191012581376 |
---|---|
author | Guo, Surong Talebi, Nahid Campos, Alfredo Sigle, Wilfried Esmann, Martin Becker, Simon F. Lienau, Christoph Kociak, Mathieu van Aken, Peter A. |
author_facet | Guo, Surong Talebi, Nahid Campos, Alfredo Sigle, Wilfried Esmann, Martin Becker, Simon F. Lienau, Christoph Kociak, Mathieu van Aken, Peter A. |
author_sort | Guo, Surong |
collection | PubMed |
description | [Image: see text] Three-dimensional plasmonic gold tapers are widely used structures in nano-optics for achieving imaging at the nanometer scale, enhanced spectroscopy, confined light sources, and ultrafast photoelectron emission. To understand their radiation properties further, especially in the proximity of the apex at the nanoscale, we employ cathodoluminescence spectroscopy with high spatial and energy resolution. The plasmon-induced radiation in the visible spectral range from three-dimensional gold tapers with opening angles of 13° and 47° is investigated under local electron excitation. We observe a much weaker radiation from the apex of the 13° taper than from that of the 47° taper. By means of finite-difference time-domain simulations we show that for small opening angles plasmon modes that are created at the apex are efficiently guided along the taper shaft. In contrast for tapers with larger opening angles, generated plasmon polaritons experience larger radiation damping. Interestingly, we find for both tapers that the most intense radiation comes from locations a few hundreds of nanometers behind the apexes, instead of exactly at the apexes. Our findings provide useful details for the design of plasmonic gold tapers as confined light sources or light absorbers. |
format | Online Article Text |
id | pubmed-6804427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-68044272019-10-23 Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes Guo, Surong Talebi, Nahid Campos, Alfredo Sigle, Wilfried Esmann, Martin Becker, Simon F. Lienau, Christoph Kociak, Mathieu van Aken, Peter A. ACS Photonics [Image: see text] Three-dimensional plasmonic gold tapers are widely used structures in nano-optics for achieving imaging at the nanometer scale, enhanced spectroscopy, confined light sources, and ultrafast photoelectron emission. To understand their radiation properties further, especially in the proximity of the apex at the nanoscale, we employ cathodoluminescence spectroscopy with high spatial and energy resolution. The plasmon-induced radiation in the visible spectral range from three-dimensional gold tapers with opening angles of 13° and 47° is investigated under local electron excitation. We observe a much weaker radiation from the apex of the 13° taper than from that of the 47° taper. By means of finite-difference time-domain simulations we show that for small opening angles plasmon modes that are created at the apex are efficiently guided along the taper shaft. In contrast for tapers with larger opening angles, generated plasmon polaritons experience larger radiation damping. Interestingly, we find for both tapers that the most intense radiation comes from locations a few hundreds of nanometers behind the apexes, instead of exactly at the apexes. Our findings provide useful details for the design of plasmonic gold tapers as confined light sources or light absorbers. American Chemical Society 2019-09-17 2019-10-16 /pmc/articles/PMC6804427/ /pubmed/31656825 http://dx.doi.org/10.1021/acsphotonics.9b00838 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Guo, Surong Talebi, Nahid Campos, Alfredo Sigle, Wilfried Esmann, Martin Becker, Simon F. Lienau, Christoph Kociak, Mathieu van Aken, Peter A. Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes |
title | Far-Field Radiation of Three-Dimensional Plasmonic
Gold Tapers near Apexes |
title_full | Far-Field Radiation of Three-Dimensional Plasmonic
Gold Tapers near Apexes |
title_fullStr | Far-Field Radiation of Three-Dimensional Plasmonic
Gold Tapers near Apexes |
title_full_unstemmed | Far-Field Radiation of Three-Dimensional Plasmonic
Gold Tapers near Apexes |
title_short | Far-Field Radiation of Three-Dimensional Plasmonic
Gold Tapers near Apexes |
title_sort | far-field radiation of three-dimensional plasmonic
gold tapers near apexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804427/ https://www.ncbi.nlm.nih.gov/pubmed/31656825 http://dx.doi.org/10.1021/acsphotonics.9b00838 |
work_keys_str_mv | AT guosurong farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT talebinahid farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT camposalfredo farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT siglewilfried farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT esmannmartin farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT beckersimonf farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT lienauchristoph farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT kociakmathieu farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes AT vanakenpetera farfieldradiationofthreedimensionalplasmonicgoldtapersnearapexes |