Cargando…

Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes

Dynamically encircling an exceptional point (EP) in parity-time (PT) symmetric waveguide systems exhibits interesting chiral dynamics that can be applied to asymmetric mode switching for symmetric and anti-symmetric modes. The counterpart symmetry-broken modes (i.e., each eigenmode is localized in o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xu-Lin, Jiang, Tianshu, Chan, C. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804564/
https://www.ncbi.nlm.nih.gov/pubmed/31645932
http://dx.doi.org/10.1038/s41377-019-0200-8
Descripción
Sumario:Dynamically encircling an exceptional point (EP) in parity-time (PT) symmetric waveguide systems exhibits interesting chiral dynamics that can be applied to asymmetric mode switching for symmetric and anti-symmetric modes. The counterpart symmetry-broken modes (i.e., each eigenmode is localized in one waveguide only), which are more useful for applications such as on-chip optical signal processing, exhibit only non-chiral dynamics and therefore cannot be used for asymmetric mode switching. Here, we solve this problem by resorting to anti-parity-time (anti-PT) symmetric systems and utilizing their unique topological structure, which is very different from that of PT-symmetric systems. We find that the dynamical encircling of an EP in anti-PT-symmetric systems with the starting point in the PT-broken phase results in chiral dynamics. As a result, symmetry-broken modes can be used for asymmetric mode switching, which is a phenomenon and application unique to anti-PT-symmetric systems. We perform experiments to demonstrate the new wave-manipulation scheme, which may pave the way towards designing on-chip optical systems with novel functionalities.