Cargando…
Forecasting the progression of Alzheimer's disease using neural networks and a novel preprocessing algorithm
INTRODUCTION: There is a 99.6% failure rate of clinical trials for drugs to treat Alzheimer's disease, likely because Alzheimer's disease (AD) patients cannot be easily identified at early stages. This study investigated machine learning approaches to use clinical data to predict the progr...
Autor principal: | Albright, Jack |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804703/ https://www.ncbi.nlm.nih.gov/pubmed/31650004 http://dx.doi.org/10.1016/j.trci.2019.07.001 |
Ejemplares similares
-
Sequences of cognitive decline in typical Alzheimer's disease and posterior cortical atrophy estimated using a novel event‐based model of disease progression
por: Firth, Nicholas C., et al.
Publicado: (2020) -
A genetics-based biomarker risk algorithm for predicting risk of Alzheimer's disease
por: Lutz, Michael W., et al.
Publicado: (2016) -
The prevalence and biomarkers’ characteristic of rapidly progressive Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database
por: Ba, Maowen, et al.
Publicado: (2017) -
Neural and behavioral substrates of disorientation in mild cognitive impairment and Alzheimer's disease
por: Sousa, Amber, et al.
Publicado: (2015) -
Alzheimer's disease assessment scale-cognitive 11-item progression model in mild-to-moderate Alzheimer's disease trials of bapineuzumab
por: Samtani, Mahesh N., et al.
Publicado: (2015)