Cargando…
Reconfigurable beam system for non-line-of-sight free-space optical communication
In this paper, we propose a reconfigurable beam-shaping system to permit energy-efficient non-line-of-sight (NLOS) free-space optical communication. Light is steered around obstacles blocking the direct communication pathway and reaches a receiver after reflecting off of a diffuse surface. A coheren...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804797/ https://www.ncbi.nlm.nih.gov/pubmed/31645917 http://dx.doi.org/10.1038/s41377-019-0177-3 |
Sumario: | In this paper, we propose a reconfigurable beam-shaping system to permit energy-efficient non-line-of-sight (NLOS) free-space optical communication. Light is steered around obstacles blocking the direct communication pathway and reaches a receiver after reflecting off of a diffuse surface. A coherent array optical transmitter (CAO-Tx) is used to spatially shape the wavefront of the light incident on a diffuse surface. Wavefront shaping is used to enhance the amount of diffusely reflected light reaching the optical receiver. Synthetic NLOS experiments for a signal reflected over an angular range of 20° are presented. A record-breaking 30-Gbit/s orthogonal frequency-division multiplexing signal is transmitted over a diffused optical wireless link with a >17-dB gain. |
---|