Cargando…

Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment

Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilate...

Descripción completa

Detalles Bibliográficos
Autores principales: Rawlinson, Kate A, Lapraz, Francois, Ballister, Edward R, Terasaki, Mark, Rodgers, Jessica, McDowell, Richard J, Girstmair, Johannes, Criswell, Katharine E, Boldogkoi, Miklos, Simpson, Fraser, Goulding, David, Cormie, Claire, Hall, Brian, Lucas, Robert J, Telford, Maximilian J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805122/
https://www.ncbi.nlm.nih.gov/pubmed/31635694
http://dx.doi.org/10.7554/eLife.45465
_version_ 1783461318483771392
author Rawlinson, Kate A
Lapraz, Francois
Ballister, Edward R
Terasaki, Mark
Rodgers, Jessica
McDowell, Richard J
Girstmair, Johannes
Criswell, Katharine E
Boldogkoi, Miklos
Simpson, Fraser
Goulding, David
Cormie, Claire
Hall, Brian
Lucas, Robert J
Telford, Maximilian J
author_facet Rawlinson, Kate A
Lapraz, Francois
Ballister, Edward R
Terasaki, Mark
Rodgers, Jessica
McDowell, Richard J
Girstmair, Johannes
Criswell, Katharine E
Boldogkoi, Miklos
Simpson, Fraser
Goulding, David
Cormie, Claire
Hall, Brian
Lucas, Robert J
Telford, Maximilian J
author_sort Rawlinson, Kate A
collection PubMed
description Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane.
format Online
Article
Text
id pubmed-6805122
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-68051222019-10-24 Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment Rawlinson, Kate A Lapraz, Francois Ballister, Edward R Terasaki, Mark Rodgers, Jessica McDowell, Richard J Girstmair, Johannes Criswell, Katharine E Boldogkoi, Miklos Simpson, Fraser Goulding, David Cormie, Claire Hall, Brian Lucas, Robert J Telford, Maximilian J eLife Developmental Biology Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane. eLife Sciences Publications, Ltd 2019-10-22 /pmc/articles/PMC6805122/ /pubmed/31635694 http://dx.doi.org/10.7554/eLife.45465 Text en © 2019, Rawlinson et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Developmental Biology
Rawlinson, Kate A
Lapraz, Francois
Ballister, Edward R
Terasaki, Mark
Rodgers, Jessica
McDowell, Richard J
Girstmair, Johannes
Criswell, Katharine E
Boldogkoi, Miklos
Simpson, Fraser
Goulding, David
Cormie, Claire
Hall, Brian
Lucas, Robert J
Telford, Maximilian J
Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title_full Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title_fullStr Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title_full_unstemmed Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title_short Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
title_sort extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment
topic Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805122/
https://www.ncbi.nlm.nih.gov/pubmed/31635694
http://dx.doi.org/10.7554/eLife.45465
work_keys_str_mv AT rawlinsonkatea extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT laprazfrancois extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT ballisteredwardr extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT terasakimark extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT rodgersjessica extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT mcdowellrichardj extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT girstmairjohannes extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT criswellkatharinee extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT boldogkoimiklos extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT simpsonfraser extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT gouldingdavid extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT cormieclaire extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT hallbrian extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT lucasrobertj extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment
AT telfordmaximilianj extraocularrodlikephotoreceptorsinaflatwormexpressxenopsinphotopigment