Cargando…

Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes

Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution, and expression modulation of two gene families invol...

Descripción completa

Detalles Bibliográficos
Autores principales: Busseni, Greta, Rocha Jimenez Vieira, Fabio, Amato, Alberto, Pelletier, Eric, Pierella Karlusich, Juan J, Ferrante, Maria I, Wincker, Patrick, Rogato, Alessandra, Bowler, Chris, Sanges, Remo, Maiorano, Luigi, Chiurazzi, Maurizio, Ribera d’Alcalà, Maurizio, Caputi, Luigi, Iudicone, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805229/
https://www.ncbi.nlm.nih.gov/pubmed/31259367
http://dx.doi.org/10.1093/molbev/msz157
Descripción
Sumario:Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution, and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate, and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment.