Cargando…
Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data
BACKGROUND: As one of the most popular data representation methods, non-negative matrix decomposition (NMF) has been widely concerned in the tasks of clustering and feature selection. However, most of the previously proposed NMF-based methods do not adequately explore the hidden geometrical structur...
Autores principales: | Yu, Na, Gao, Ying-Lian, Liu, Jin-Xing, Wang, Juan, Shang, Junliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805321/ https://www.ncbi.nlm.nih.gov/pubmed/31639067 http://dx.doi.org/10.1186/s40246-019-0222-6 |
Ejemplares similares
-
Co-differential Gene Selection and Clustering Based on Graph Regularized Multi-View NMF in Cancer Genomic Data
por: Yu, Na, et al.
Publicado: (2018) -
Quantum walks on regular uniform hypergraphs
por: Liu, Ying, et al.
Publicado: (2018) -
Clustering via hypergraph modularity
por: Kamiński, Bogumił, et al.
Publicado: (2019) -
Robustness and Complexity of Directed and Weighted Metabolic Hypergraphs
por: Traversa, Pietro, et al.
Publicado: (2023) -
Model-based clustering for random hypergraphs
por: Ng, Tin Lok James, et al.
Publicado: (2021)