Cargando…

Immunoreactive trypsinogen levels in newborn screened infants with an inconclusive diagnosis of cystic fibrosis

BACKGROUND: Newborn screening (NBS) for cystic fibrosis (CF) not only identifies infants with a diagnosis of CF, but also those with an uncertain diagnosis of cystic fibrosis (CF), i.e. CF transmembrane conductance regulator (CFTR)-related metabolic syndrome (CRMS) or CF screen positive inconclusive...

Descripción completa

Detalles Bibliográficos
Autores principales: Ooi, Chee Y., Sutherland, Rosie, Castellani, Carlo, Keenan, Katherine, Boland, Margaret, Reisman, Joe, Bjornson, Candice, Chilvers, Mark A., van Wylick, Richard, Kent, Steven, Price, April, Mateos-Corral, Dimas, Hughes, Daniel, Solomon, Melinda, Zuberbuhler, Peter, Brusky, Janna, Durie, Peter R., Ratjen, Felix, Gonska, Tanja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805545/
https://www.ncbi.nlm.nih.gov/pubmed/31640630
http://dx.doi.org/10.1186/s12887-019-1756-4
Descripción
Sumario:BACKGROUND: Newborn screening (NBS) for cystic fibrosis (CF) not only identifies infants with a diagnosis of CF, but also those with an uncertain diagnosis of cystic fibrosis (CF), i.e. CF transmembrane conductance regulator (CFTR)-related metabolic syndrome (CRMS) or CF screen positive inconclusive diagnosis (CFSPID). These infants have an uncertain long-term outcome and it is currently unclear around time of diagnosis, which infants are at higher risk of later fulfilling a CF diagnosis. In this study, we hypothesised that immunoreactive trypsinogen (IRT) levels, used in NBS as a marker of pancreatic disease and function, may reflect the degree of CFTR dysfunction in each individual and therefore would help to identify those with CRMS/CSPID who are later at risk for meeting the criteria of CF. METHODS: In this longitudinal, prospective study, infants with CRMS/CFSPID and CF were recruited and followed in 9 CF clinics (Canada and Italy). We compared NBS IRT levels between CF and CRMS/CFSPID, and between children with CRMS/CFSPID→CF and CRMS/CFSPID→CRMS/CFSPID during the period of June 2007 to April 2016. RESULTS: Ninety eight CRMS/CFSPID and 120 CF subjects were enrolled. During the study period, 14 (14.3%) CRMS/CFSPID subjects fulfilled the diagnostic criteria for CF (CRMS/CFSPID→CF), while the diagnosis remained uncertain (CRMS/CFSPID→ CRMS/CFSPID) in 84 (85.7%) subjects. Significantly higher NBS IRT concentrations (ng/ml) were present in CF than CRMS/CFPSID (median (interquartile range): 143.8 (99.8–206.2) vs. 75.0 (61.0–105.9); P < 0.0001). Infants with CRMS/CFSPID→CF (n = 14) had significantly higher NBS IRT concentrations (ng/ml) than CRMS/CFSPID→ CRMS/CFSPID (n = 83) (median (interquartile range): 108.9 (72.3–126.8) vs. 73.7(60.0–96.0); P = 0.02). CONCLUSIONS: Amongst infants who tested positive on NBS for CF, there is a gradation of elevated NBS IRT concentrations. Infants with CF have higher NBS IRT levels than CRMS/CFPSID, and higher NBS IRT concentrations were present in infants with CRMS/CFSPID→CF than CRMS/CFSPID→ CRMS/CFSPID. NBS IRT concentrations, in concert with other factors, may have the potential to predict the likelihood of CF amongst infants with CRMS/CFSPID.