Cargando…
Breast cancer histopathology image classification through assembling multiple compact CNNs
BACKGROUND: Breast cancer causes hundreds of thousands of deaths each year worldwide. The early stage diagnosis and treatment can significantly reduce the mortality rate. However, the traditional manual diagnosis needs intense workload, and diagnostic errors are prone to happen with the prolonged wo...
Autores principales: | Zhu, Chuang, Song, Fangzhou, Wang, Ying, Dong, Huihui, Guo, Yao, Liu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805574/ https://www.ncbi.nlm.nih.gov/pubmed/31640686 http://dx.doi.org/10.1186/s12911-019-0913-x |
Ejemplares similares
-
WalkIm: Compact image-based encoding for high-performance classification of biological sequences using simple tuning-free CNNs
por: Akbari Rokn Abadi, Saeedeh, et al.
Publicado: (2022) -
Image Correction Methods for Regions of Interest in Liver Cirrhosis Classification on CNNs
por: Mitani, Yoshihiro, et al.
Publicado: (2022) -
Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs
por: Mahmood, Tahir, et al.
Publicado: (2020) -
Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs
por: Mota, Ana M., et al.
Publicado: (2022) -
Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images
por: Voon, Wingates, et al.
Publicado: (2022)