Cargando…

Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae)

BACKGROUND: The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containin...

Descripción completa

Detalles Bibliográficos
Autores principales: Akami, Mazarin, Ren, Xue-Ming, Qi, Xuewei, Mansour, Abdelaziz, Gao, Bingli, Cao, Shuai, Niu, Chang-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805663/
https://www.ncbi.nlm.nih.gov/pubmed/31640545
http://dx.doi.org/10.1186/s12866-019-1607-3
Descripción
Sumario:BACKGROUND: The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containing all amino acids) or full diet supplemented with bacteria at similar concentrations to explore the effects of intestinal bacteria on foraging decision and fitness of Bactrocera dorsalis. RESULTS: The results show that intestinal probiotics elicit beneficial foraging decision and enhance the female reproduction fitness and survival of B. dorsalis (symbiotic and axenic), yet preferences for probiotic diets were significantly higher in axenic flies to which they responded faster compared to full diet. Moreover, females fed diet supplemented with Pantoea dispersa and Enterobacter cloacae laid more eggs but had shorter lifespan while female fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity compared to the positive control. Conversely, flies fed sugar diet (negative control) were not able to produce eggs, but lived longer than those from the positive control. CONCLUSIONS: These results suggest that intestinal bacteria can drive the foraging decision in a way which promotes the reproduction and survival of B. dorsalis. Our data highlight the potentials of gut bacterial isolates to control the foraging behavior of the fly and empower the sterile insect technique (SIT) program through the mass rearing.