Cargando…
Human mitochondrial genome compression using machine learning techniques
BACKGROUND: In recent years, with the development of high-throughput genome sequencing technologies, a large amount of genome data has been generated, which has caused widespread concern about data storage and transmission costs. However, how to effectively compression genome sequences data remains...
Autores principales: | Wang, Rongjie, Zang, Tianyi, Wang, Yadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805717/ https://www.ncbi.nlm.nih.gov/pubmed/31639043 http://dx.doi.org/10.1186/s40246-019-0225-3 |
Ejemplares similares
-
BdBG: a bucket-based method for compressing genome sequencing data with dynamic de Bruijn graphs
por: Wang, Rongjie, et al.
Publicado: (2018) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques
por: Li, Yongjian, et al.
Publicado: (2022) -
Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks
por: Hassan, Mohamed Yusuf, et al.
Publicado: (2022) -
Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin
por: Shah, Hammad Ahmed, et al.
Publicado: (2022)