Cargando…

Pleione: A tool for statistical and multi-objective calibration of Rule-based models

Mathematical models based on Ordinary Differential Equations (ODEs) are frequently used to describe and simulate biological systems. Nevertheless, such models are often difficult to understand. Unlike ODE models, Rule-Based Models (RBMs) utilise formal language to describe reactions as a cumulative...

Descripción completa

Detalles Bibliográficos
Autores principales: Santibáñez, Rodrigo, Garrido, Daniel, Martin, Alberto J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805871/
https://www.ncbi.nlm.nih.gov/pubmed/31641245
http://dx.doi.org/10.1038/s41598-019-51546-6
Descripción
Sumario:Mathematical models based on Ordinary Differential Equations (ODEs) are frequently used to describe and simulate biological systems. Nevertheless, such models are often difficult to understand. Unlike ODE models, Rule-Based Models (RBMs) utilise formal language to describe reactions as a cumulative number of statements that are easier to understand and correct. They are also gaining popularity because of their conciseness and simulation flexibility. However, RBMs generally lack tools to perform further analysis that requires simulation. This situation arises because exact and approximate simulations are computationally intensive. Translating RBMs into ODEs is commonly used to reduce simulation time, but this technique may be prohibitive due to combinatorial explosion. Here, we present the software called Pleione to calibrate RBMs. Parameter calibration is essential given the incomplete experimental determination of reaction rates and the goal of using models to reproduce experimental data. The software distributes stochastic simulations and calculations and incorporates equivalence tests to determine the fitness of RBMs compared with data. The primary features of Pleione were thoroughly tested on a model of gene regulation in Escherichia coli. Pleione yielded satisfactory results regarding calculation time and error reduction for multiple simulators, models, parameter search strategies, and computing infrastructures.