Cargando…
Recommendations and future directions for supervised machine learning in psychiatry
Machine learning methods hold promise for personalized care in psychiatry, demonstrating the potential to tailor treatment decisions and stratify patients into clinically meaningful taxonomies. Subsequently, publication counts applying machine learning methods have risen, with different data modalit...
Autores principales: | Cearns, Micah, Hahn, Tim, Baune, Bernhard T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805872/ https://www.ncbi.nlm.nih.gov/pubmed/31641106 http://dx.doi.org/10.1038/s41398-019-0607-2 |
Ejemplares similares
-
From multivariate methods to an AI ecosystem
por: Winter, Nils R., et al.
Publicado: (2021) -
Systematic misestimation of machine learning performance in neuroimaging studies of depression
por: Flint, Claas, et al.
Publicado: (2021) -
Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach
por: Cearns, Micah, et al.
Publicado: (2019) -
Machine learning, statistical learning and the future of biological research in psychiatry
por: Iniesta, R., et al.
Publicado: (2016) -
The ABC recommendations for validation of supervised machine learning results in biomedical sciences
por: Chicco, Davide, et al.
Publicado: (2022)